This repository has been archived by the owner on Jul 7, 2022. It is now read-only.
forked from nl4opt/nl4opt-subtask2-baseline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneration_bart.py
125 lines (102 loc) · 5.69 KB
/
generation_bart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
'''
BART generation with copy mechanism modified from https://huggingface.co/transformers/_modules/transformers/models/bart/modeling_bart.html
'''
import torch
import torch.nn.functional as F
from transformers import BartForConditionalGeneration, BartModel, BartConfig
from transformers.modeling_outputs import Seq2SeqLMOutput
class CopyConditionalGeneration(BartForConditionalGeneration):
def __init__(self, config: BartConfig):
super().__init__(config)
self.selected_heads = None
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should either be in ``[0, ...,
config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``.
Returns:
"""
assert output_attentions or self.model.config.output_attentions, "output_attentions must be true"
# original outputs
outputs = self.model(input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict, )
if input_ids is None:
input_ids = self._cache_input_ids
# if self.selected_heads is None:
# take the cross attention non-linear function
cross_attention_non_linear = self.model.decoder.layers[-1].encoder_attn.out_proj.weight # (emb_dim, emb_dim)
cross_attention_non_linear_sum = cross_attention_non_linear.view(self.config.decoder_attention_heads,
-1).abs().sum(1) # (num_heads)
_, selected_heads = torch.topk(cross_attention_non_linear_sum, k=self._k)
self.selected_heads = selected_heads
encoder_last_hidden_state = outputs.encoder_last_hidden_state # (batch, seq, hidden)
decoder_last_hidden_state = outputs[0] # (batch, decoding_seq, hidden )
# compute lm logits based on attention
last_cross_attentions = outputs.cross_attentions[
-1] # (batch_size, num_heads, decoding_seq_length, encoding_seq_length).
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias # (batch_size, decoding_seq_length, emb_dim)
cross_attentions_aggregate = last_cross_attentions[:, self.selected_heads, :, :].mean(
dim=1) # (batch, decoding_seq_length, encoding_seq_length)
dummy_input_ids = input_ids.unsqueeze(-1).expand(-1, -1, lm_logits.size(1)).transpose(1,
2) # (batch, decoding_seq_length, encoding_seq_length)
copy_logits = torch.zeros_like(lm_logits) # (batch, decoding_seq_length, emb_dim)
copy_logits.scatter_add_(dim=2, index=dummy_input_ids, src=cross_attentions_aggregate)
p_gen = torch.bmm(decoder_last_hidden_state,
encoder_last_hidden_state.mean(dim=1).unsqueeze(dim=-1)) # (batch, decoding_seq, 1)
p_gen = torch.sigmoid(p_gen)
lm_logits = F.softmax(lm_logits, dim=-1) * p_gen + copy_logits * (
1 - p_gen) # (batch_size, decoding_seq_length, emb_dim)
masked_lm_loss = None
if labels is not None:
# compute loss mask and fill -100 with 0
loss_mask = labels != -100
labels.masked_fill_(~loss_mask, 0)
# use negative log likelihood
gold_probs = torch.gather(lm_logits, 2, labels.unsqueeze(2)).squeeze(2)
eps = 1e-7 # for safe log
masked_lm_loss = - torch.log(gold_probs + eps) * self._loss_weight[labels]
masked_lm_loss = (masked_lm_loss * loss_mask).mean()
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)