forked from lessw2020/t5_11
-
Notifications
You must be signed in to change notification settings - Fork 0
/
anyprecision_quant.py
245 lines (197 loc) · 8.96 KB
/
anyprecision_quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# AnyPrecisionAdamW: a flexible precision AdamW optimizer
# with optional Kahan summation for high precision weight updates.
# Allows direct control over momentum, variance and auxiliary compensation
# buffer dtypes.
# Optional Kahan summation is used to offset precision reduction for
# the weight updates. This allows full training in BFloat16 (equal or
# better than FP32 results in many cases) due to high precision weight upates.
import torch
from torch.optim.optimizer import Optimizer
import bitsandbytes.functional as bf
class AnyPrecisionAdamW(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
use_kahan_summation=False,
momentum_dtype=torch.float32,
variance_dtype=torch.int8,
compensation_buffer_dtype=torch.bfloat16,
curr_device=None,
):
"""
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay coefficient (default: 1e-2)
# Any Precision specific
use_kahan_summation = creates auxiliary buffer to ensure high precision
model param updates (default: False)
momentum_dtype = dtype for momentum (default: BFloat32)
variance_dtype = dtype for uncentered variance (default: BFloat16)
compensation_buffer_dtype = dtype for Kahan summation
buffer (default: BFloat16)
# Usage
This optimizer implements optimizer states, and Kahan summation
for high precision updates, all in user controlled dtypes.
Defaults are variance in BF16, Momentum in FP32.
This can be run in FSDP mixed precision, amp, or full precision,
depending on what training pipeline you wish to work with.
Setting to use_kahan_summation = False, and changing momentum and
variance dtypes to FP32, reverts this to a standard AdamW optimizer.
"""
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
use_kahan_summation=use_kahan_summation,
momentum_dtype=momentum_dtype,
variance_dtype=variance_dtype,
compensation_buffer_dtype=compensation_buffer_dtype,
)
super().__init__(params, defaults)
self.qmap = bf.create_dynamic_map(signed=False)
self.curr_device = curr_device
if curr_device is None:
print(f"warning - optimizer not aware of device")
else:
self.qmap.to(curr_device)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
if closure is not None:
with torch.enable_grad():
# to fix linter, we do not keep the returned loss for use atm.
closure()
for group in self.param_groups:
beta1, beta2 = group["betas"]
lr = group["lr"]
weight_decay = group["weight_decay"]
eps = group["eps"]
use_kahan_summation = group["use_kahan_summation"]
momentum_dtype = group["momentum_dtype"]
variance_dtype = group["variance_dtype"]
compensation_buffer_dtype = group["compensation_buffer_dtype"]
for p in group["params"]:
if p.grad is None:
continue
if p.grad.is_sparse:
raise RuntimeError(
"AnyPrecisionAdamW does not support sparse gradients"
)
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = torch.tensor(0.0)
# momentum - EMA of gradient values
state["exp_avg"] = torch.zeros_like(
p,
dtype=momentum_dtype,
)
# variance uncentered - EMA of squared gradient values
num_elements = p.numel()
# todo - leave smaller params in fp32
# avoid quantizing small parameters...not worth the overhead
# if num_elements < 4096:
# state["exp_avg_sq"] = torch.zeros_like(
# p,
# dtype=torch.float32,
# )
# else:
# blockwise quantization init ===============
# create and localize our qmap
if self.curr_device is None:
local_qmap = self.qmap.clone().to(p.device)
state["qmap"] = local_qmap
else:
state["qmap"] = self.qmap
# actual state
state["exp_avg_sq"] = torch.zeros_like(
p,
dtype=torch.uint8,
)
blocks = num_elements // 2048
blocks += 1 if num_elements % 2048 else 0
state["absmax"] = torch.zeros(
blocks, dtype=torch.float32, device=p.device
)
# optional Kahan summation - accumulated error tracker
if use_kahan_summation:
state["compensation"] = torch.zeros_like(
p,
dtype=compensation_buffer_dtype,
)
# main processing -------------------------
# update the steps for each param group update
state["step"] += 1
step = state["step"]
exp_avg = state["exp_avg"]
q_exp_avg_sq = state["exp_avg_sq"]
num_param_elements = p.numel()
grad = p.grad
# weight decay, AdamW style
if weight_decay:
p.data.mul_(1 - lr * weight_decay)
# update momentum
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
# unquantize # if needed:
# if num_param_elements >4095: # inverse of < 4096
qmap = state["qmap"]
absmax = state["absmax"]
var_buffer = torch.zeros_like(
p,
dtype=torch.float32,
)
# unq into var_buffer
res = bf.unquantize_blockwise(
q_exp_avg_sq, absmax=absmax, code=qmap, out=var_buffer
)
# update uncentered variance
var_buffer.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# adjust using bias1
bias_correction1 = 1 - beta1**step
step_size = lr / bias_correction1
# adjust using bias2
denom_correction = (1 - beta2**step) ** 0.5 # avoids math import
centered_variance = (var_buffer.sqrt() / denom_correction).add_(
eps, alpha=1
)
# quantize back
# if num_param_elements >4095:
res = bf.quantize_blockwise(
var_buffer,
quant_state=None,
code=qmap,
absmax=absmax,
out=q_exp_avg_sq,
)
# lr update to compensation
if use_kahan_summation:
compensation = state["compensation"]
compensation.addcdiv_(exp_avg, centered_variance, value=-step_size)
# update weights with compensation (Kahan summation)
# save error back to compensation for next iteration
temp_buffer = p.detach().clone()
p.data.add_(compensation)
compensation.add_(temp_buffer.sub_(p.data))
else:
# usual AdamW updates
p.data.addcdiv_(exp_avg, centered_variance, value=-step_size)