-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
51 lines (49 loc) · 1.5 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
This is an example config file which finished in 1h30 on the JED cluster (EPFL).
Sildenafil is the only target. The learning curves are done only for subset sizes N=16, 32, 64, with no cross-validation for the random curve.
See `config-qm7drugs.py` for a full config file.
"""
config = {
# absolute path
"repository_folder": "/home/haeberle/molekuehl/",
###
"config_name": "template",
"database": "qm7",
"representation": "FCHL",
###
# corresponding names must be in targets/targets.csv
"target_names": [
"sildenafil",
],
"in_database": False,
"plot_average_target_names": [
"sildenafil",
],
###
"generate_database": True,
"generate_targets": True,
"cur_subset": True,
"fps_subset": True,
"sml_subset": True,
"algo_model": True,
"algo_subset": True,
"learning_curves": ["algo", "sml", "cur", "random"],
"plots_individual": ["algo", "sml", "cur", "random"],
"plots_average": ["algo", "sml", "cur", "random"],
###
"scope": "local_vector",
"penalty": 1,
"penalty_lc": [0,1],
"duplicates": 1,
"timelimit": 3600, # 1 hour
"PoolSearchMode": 2,
"number_of_fragments": 64, # size of subset selected by ILP
###
"FPS_timelimit": 600, # 10 mins
"verbose": False,
###
"learning_curve_ticks": [16, 32, 64],
###
"random_state": None, # for multiple random subset selection, don't use a fixed state!
"CV": 1, # number of cross-validation for random learning curves
}