-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_tsne.py
120 lines (96 loc) · 3.67 KB
/
plot_tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
def plot_tsne(fig, ax, x, y, selected_atom=None, title=None, rasterized=True):
ax.set_title(title, loc='left', fontsize=36)
colors = {0: '#0000FF', 1: '#00FF00', 2: '#FF0000'}
if x is not None:
alphas = np.zeros_like(y, dtype=float)
alphas[np.where(y==0)] = 1.0
alphas[np.where(y==1)] = 1.0 #{6: 0.125 / 2, 16: 20/845, 8: 20/80, 7:20/80}[selected_atom]
alphas[np.where(y==2)] = 1.0
s = np.full(len(y), fill_value={8: 18, 7:18, 6:9, 16:36}[selected_atom])
s[np.where(y==2)] = 90
s[np.where(y==1)] = s[0]
target_mask = (y==2)
classes = np.unique(y)
point_colors = np.array(list(map(colors.get, y)))
ax.scatter(
x[~target_mask, 0],
x[~target_mask, 1],
c=point_colors[~target_mask],
s=s[~target_mask],
alpha=alphas[~target_mask],
rasterized=rasterized,
)
ax.scatter(
x[target_mask, 0],
x[target_mask, 1],
c=point_colors[target_mask],
s=s[target_mask],
alpha=alphas[target_mask],
edgecolors='black',
rasterized=rasterized,
)
ax.set_xticks([]), ax.set_yticks([]), ax.axis("off")
legend_handles = [
matplotlib.lines.Line2D(
[],
[],
marker="s",
color="w",
markerfacecolor=colors[yi],
ms=10,
alpha=1,
linewidth=0,
label=yi,
markeredgecolor="k",
)
for yi in range(2,-1,-1)
]
legend_kwargs = dict(loc="outside lower center",
prop={'size': 32},
handletextpad=0, columnspacing=1,
bbox_to_anchor=(0.5, 0), frameon=False, ncol=3)
fig.legend(handles=legend_handles, labels=['target','selected from QM7','other in QM7'], **legend_kwargs)
return
algos = ["algo_0", "algo_1", "fps", "cur", "sml", "random"]
alg_name = {
"algo_0":'ILP(p=0)',
"algo_1":'ILP(p=1)',
"random":'random',
"cur":'CUR',
"sml":'SML',
"fps":'FPS',
}
pt = {6:'C', 7:"N", 8:"O", 16:"S", 9:"F", 1:"H"}
perplexity = {6: 500, 16: 4, 8: 80, 7: 90}
#'sitagliptin' 'raltegravir'
for target in ['penicillin', 'apixaban', 'imatinib', 'oseltamivir', 'oxycodone',
'pemetrexed', 'pregabalin', 'salbutamol', 'sildenafil', 'troglitazone']:
print(target)
for selected_atom in [6, 7, 8, 16]:
print(selected_atom)
fig, axs = matplotlib.pyplot.subplots(2, 3, figsize=(8*3, 8*2))
for i, (label, algo) in enumerate(zip('abcdefgh', algos)):
try:
data = np.load(f"interpret_figs/tsne/tsne_{target}_{selected_atom}_perp{perplexity[selected_atom]}_{algo}.npz")
except:
data = {'x': None, 'y': None}
plot_tsne(fig, axs[i//3,i%3], data['x'], data['y'],
selected_atom=selected_atom,
title = f'({label}) {alg_name[algo]}',
rasterized=True,
)
fig.tight_layout()
if target=='penicillin' and selected_atom==6:
dpi = 600
plt.subplots_adjust(bottom=0.05, right=1, left=0)
else:
dpi = 300
plt.subplots_adjust(bottom=0.05, right=1, top=0.88, left=0)
fig.suptitle(f'{target} ({pt[selected_atom]})', fontsize=48)
output_path=f"interpret_figs/tsne/tsne_{target}_{selected_atom}_perp{perplexity[selected_atom]}.pdf"
fig.savefig(output_path, dpi=dpi)
plt.close()