forked from FernandoPalazuelos/Displasias
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_seeds.py
executable file
·141 lines (105 loc) · 4.55 KB
/
get_seeds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Adjust seed line
@author: dcortex
"""
from os.path import join, basename
from os import chdir
import numpy as np
import nibabel as nib
from sklearn.neighbors import NearestNeighbors
import networkx as nx
from scipy.interpolate import splprep, splev
from builtins import breakpoint
def sort_points(seeds):
"""
Returns sorted 'seeds' (np.ndarray) by their nearest neighbors
"""
if len(seeds)==0: return np.array([])
clf = NearestNeighbors(n_neighbors=2).fit(seeds)
G = clf.kneighbors_graph() # sparse N x N matrix
T = nx.from_scipy_sparse_array(G)
paths = [list(nx.dfs_preorder_nodes(T, i)) for i in range(len(seeds))]
mindist = np.inf
minidx = 0
for i in range(len(seeds)):
p = paths[i] # order of nodes
ordered = seeds[p] # ordered nodes
# find cost of that order by the sum of euclidean distances between points (i) and (i+1)
cost = (((ordered[:-1] - ordered[1:])**2).sum(1)).sum()
if cost < mindist:
mindist = cost
minidx = i
seeds = seeds[paths[minidx]]
# Medial a lateral
if seeds[0][1] < seeds[-1][1]: seeds = seeds[::-1]
return seeds
def smooth_curve(x, y, s=0.5):
tck, u = splprep([x, y], s=s)
smooth_points = np.array(splev(u, tck)).T
return smooth_points
def get_seeds_from_nii(f_name, subject, side='l', smooth=False, save=True, s=0.1,
save_folder='/tmp',):
lines_volume = nib.load(f_name).get_fdata()
seeds_dict = {}
for slice_n in range(1,lines_volume.shape[2]):
sx, sy = np.array(np.nonzero(lines_volume[:,:,slice_n]))
seeds = np.array([sx,sy]).T
if len(seeds)==0: continue
seeds = sort_points(seeds)
if smooth: seeds = smooth_curve(*seeds.T, s=s)
# Add z coordinate
ones = np.ones([len(seeds), 1])
seeds = np.concatenate((seeds, slice_n*ones), axis=1)[1:,:]
# remove first entry because of reasons ^
if save:
seeds_name = f'{subject}_{side}_seeds'
if smooth: seeds_name += '_smooth'
np.savetxt(join(save_folder, basename(seeds_name)+'.txt'), seeds)
print(f'\n Created file: {basename(seeds_name)}.txt in: {save_folder}')
seeds_dict[seeds_name] = seeds
return seeds_dict
#_____________________________________________________________________________
if __name__ == "__main__":
import sys
import subprocess
from os.path import dirname
#subject = sys.argv[1] # subject = '37A
#side = 'l'
#f_name = f'minc/{subject}_{side}_outline.nii'
f_name = sys.argv[1]
out_dir = sys.argv[2]
prefix = sys.argv[3]
side = sys.argv[4]
try:
n_seeds = sys.argv[5]
except IndexError:
n_seeds = 150
print(f'\n Using {n_seeds} seeds')
#subject = basename(f_name).split('_')[0]
#side = basename(f_name).split('_')[1]
#side = basename(basename(f_name).split('_')[1]).split('.')[0]
seeds = get_seeds_from_nii(f_name, subject=prefix, side=side, smooth=True, save=True,
s=10, save_folder=out_dir, )
#out_dir = dirname(f_name)
for seeds_name in list(seeds.keys()):
convert1 = (f"tckconvert {join(out_dir, seeds_name)}.txt"
f" {join(out_dir, seeds_name)}.tck ")
# -voxel2scanner ../{subject}_x2.nii
resample = (f"tckresample -num_points {n_seeds} -nthreads 0"
f" {join(out_dir, seeds_name)}.tck"
f" {join(out_dir, seeds_name)}_resampled.tck")
convert2 = (f"tckconvert {join(out_dir, seeds_name)}_resampled.tck"
f" {join(out_dir, seeds_name)}_resampled_[].txt")
rename = (f"mv {join(out_dir, seeds_name)}_resampled_0000000.txt"
f" {join(out_dir, seeds_name)}_resampled.txt")
for my_command in [convert1, resample, convert2, rename]:
process = subprocess.Popen(my_command.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
print((f"\n Created file: {join(out_dir, seeds_name)}_resampled"
f"(txt & tck) in: {out_dir}\n"))
#!tckconvert {seeds_name}.txt {seeds_name}.tck -voxel2scanner ../{subject}_x2.nii
#!tckresample -num_points 150 -nthreads 0 {seeds_name}.tck {seeds_name}_resampled.tck
#!tckconvert {seeds_name}_resampled.tck {seeds_name}_resampled_[].txt
sys.exit()