The torch_ac
package contains the PyTorch implementation of two Actor-Critic deep reinforcement learning algorithms:
Note: An example of use of this package is given in the rl-starter-files
repository. More details below.
- Recurrent policies
- Reward shaping
- Handle observation spaces that are tensors or dict of tensors
- Handle discrete action spaces
- Observation preprocessing
- Multiprocessing
- CUDA
pip3 install torch-ac
Note: If you want to modify torch-ac
algorithms, you will need to rather install a cloned version, i.e.:
git clone https://github.com/lcswillems/torch-ac.git
cd torch-ac
pip3 install -e .
A brief overview of the components of the package:
torch_ac.A2CAlgo
andtorch_ac.PPOAlgo
classes for A2C and PPO algorithmstorch_ac.ACModel
andtorch_ac.RecurrentACModel
abstract classes for non-recurrent and recurrent actor-critic modelstorch_ac.DictList
class for making dictionnaries of lists list-indexable and hence batch-friendly
Here are detailled the most important components of the package.
torch_ac.A2CAlgo
and torch_ac.PPOAlgo
have 2 methods:
__init__
that may take, among the other parameters:- an
acmodel
actor-critic model, i.e. an instance of a class inheriting from eithertorch_ac.ACModel
ortorch_ac.RecurrentACModel
. - a
preprocess_obss
function that transforms a list of observations into a list-indexable objectX
(e.g. a PyTorch tensor). The defaultpreprocess_obss
function converts observations into a PyTorch tensor. - a
reshape_reward
function that takes into parameter an observationobs
, the actionaction
taken, the rewardreward
received and the terminal statusdone
and returns a new reward. By default, the reward is not reshaped. - a
recurrence
number to specify over how many timesteps gradient is backpropagated. This number is only taken into account if a recurrent model is used and must divide thenum_frames_per_agent
parameter and, for PPO, thebatch_size
parameter.
- an
update_parameters
that first collects experiences, then update the parameters and finally returns logs.
torch_ac.ACModel
has 2 abstract methods:
__init__
that takes into parameter anobservation_space
and anaction_space
.forward
that takes into parameter N preprocessed observationsobs
and returns a PyTorch distributiondist
and a tensor of valuesvalue
. The tensor of values must be of size N, not N x 1.
torch_ac.RecurrentACModel
has 3 abstract methods:
__init__
that takes into parameter the same parameters thantorch_ac.ACModel
.forward
that takes into parameter the same parameters thantorch_ac.ACModel
along with a tensor of N memoriesmemory
of size N x M where M is the size of a memory. It returns the same thing thantorch_ac.ACModel
plus a tensor of N memoriesmemory
.memory_size
that returns the size M of a memory.
Note: The preprocess_obss
function must return a list-indexable object (e.g. a PyTorch tensor). If your observations are dictionnaries, your preprocess_obss
function may first convert a list of dictionnaries into a dictionnary of lists and then make it list-indexable using the torch_ac.DictList
class as follow:
>>> d = DictList({"a": [[1, 2], [3, 4]], "b": [[5], [6]]})
>>> d.a
[[1, 2], [3, 4]]
>>> d[0]
DictList({"a": [1, 2], "b": [5]})
Note: if you use a RNN, you will need to set batch_first
to True
.
Examples of use of the package components are given in the rl-starter-scripts
repository.
...
algo = torch_ac.PPOAlgo(envs, acmodel, args.frames_per_proc, args.discount, args.lr, args.gae_lambda,
args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence,
args.optim_eps, args.clip_eps, args.epochs, args.batch_size, preprocess_obss)
...
exps, logs1 = algo.collect_experiences()
logs2 = algo.update_parameters(exps)
More details here.
torch_ac.DictList({
"image": preprocess_images([obs["image"] for obs in obss], device=device),
"text": preprocess_texts([obs["mission"] for obs in obss], vocab, device=device)
})
More details here.
class ACModel(nn.Module, torch_ac.RecurrentACModel):
...
def forward(self, obs, memory):
...
return dist, value, memory
More details here.
More details here.