-
Notifications
You must be signed in to change notification settings - Fork 0
/
map.lua
310 lines (279 loc) · 9.14 KB
/
map.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
local util = require "util"
local bio = require "bio"
local abs = math.abs
local rad, deg = math.rad, math.deg
local cos, sin, tan = math.cos, math.sin, math.tan
local acos, asin, atan, atan2 = math.acos, math.asin, math.atan, math.atan2
local sqrt = math.sqrt
local pi, huge = math.pi, math.huge
-- == Utilities ==
-- region is a list of polygons in geographic coordinates.
local function distance(lon1, lat1, lon2, lat2, r)
r = r or 6378137
local dlat = rad(lat2 - lat1)
local dlon = rad(lon2 - lon1)
lat1, lat2 = rad(lat1), rad(lat2)
local a1, a2, a, c
a1 = sin(dlat/2) * sin(dlat/2)
a2 = sin(dlon/2) * sin(dlon/2) * cos(lat1) * cos(lat2)
a = a1 + a2
c = 2 * atan2(sqrt(a), sqrt(1-a))
return r * c
end
local function bbox(polys)
local x0, y0, x1, y1 = huge, huge, -huge, -huge
for poly in util.func_iter(polys) do
for point in util.func_iter(poly) do
local x, y = unpack(point)
x0 = x < x0 and x or x0
y0 = y < y0 and y or y0
x1 = x > x1 and x or x1
y1 = y > y1 and y or y1
end
end
return {x0=x0, y0=y0, x1=x1, y1=y1}
end
local function centroid(region)
local epsilon = 1e-10
local bb = bbox(region)
local x0, y0, x1, y1 = bb.x0, bb.y0, bb.x1, bb.y1
local lon0 = (x0 + x1) / 2
local lat0 = (y0 + y1) / 2
local lon1, lat1
while true do
local prj = Proj("AzimuthalEqualArea", {lon0, lat0})
local cw = {}
for i, polygon in ipairs(region) do
local xys = {}
for j, point in ipairs(polygon) do
xys[j] = {prj:map(unpack(point))}
end
if xys[#xys][0] ~= xys[1][0] or xys[#xys][1] ~= xys[1][1] then
xys[#xys+1] = xys[1]
end
-- http://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon
local cx, cy, sa = 0, 0, 0
for j = 1, #xys-1 do
local x0, y0 = unpack(xys[j])
local x1, y1 = unpack(xys[j+1])
local f = x0 * y1 - x1 * y0
cx = cx + (x0 + x1) * f
cy = cy + (y0 + y1) * f
sa = sa + f
end
cx = cx / (3 * sa)
cy = cy / (3 * sa)
cw[#cw+1] = {cx, cy, sa}
end
local cx, cy, sw = 0, 0, 0
for i = 1, #cw do
local x, y, w = unpack(cw[i])
cx = cx + x * w
cy = cy + y * w
sw = sw + w
end
cx = cx / sw
cy = cy / sw
lon1, lat1 = prj:inv(cx, cy)
if abs(lon1-lon0) <= epsilon and abs(lat1-lat0) <= epsilon then
break
end
lon0, lat0 = lon1, lat1
end
return lon1, lat1
end
-- == Projections ==
-- Lambert Azimuthal Equal-Area Projection for the Spherical Earth.
local AzimuthalEqualArea = {}
AzimuthalEqualArea.__index = AzimuthalEqualArea
function AzimuthalEqualArea:map(lon, lat)
lon, lat = rad(lon), rad(lat)
lon = lon - self.lon
local k, x, y
k = sqrt(2 / (1 + sin(self.lat) * sin(lat) + cos(self.lat) * cos(lat) * cos(lon)))
x = self.r * k * cos(lat) * sin(lon)
y = self.r * k * (cos(self.lat) * sin(lat) - sin(self.lat) * cos(lat) * cos(lon))
return x, y
end
function AzimuthalEqualArea:inv(x, y)
local p = sqrt(x*x + y*y)
local c = 2 * asin(p / (2 * self.r))
local lon, lat
-- FIXME: In the formulas below, should it be atan or atan2?
if self.lat == pi / 2 then
-- North Polar Aspect.
lon = self.lon + atan(x/(-y))
elseif self.lat == -pi / 2 then
-- South Polar Aspect.
lon = self.lon + atan(x/y)
else
-- Any other Oblique Aspect.
local den = p * cos(self.lat) * cos(c) - y * sin(self.lat) * sin(c)
lon = self.lon + atan(x * sin(c) / den)
end
lat = asin(cos(c) * sin(self.lat) + y * sin(c) * cos(self.lat) / p)
lon, lat = deg(lon), deg(lat)
return lon, lat
end
function AzimuthalEqualArea:model()
return {type="sphere", r=self.r}
end
local projs = {
AzimuthalEqualArea=AzimuthalEqualArea
}
-- Generic projection interface.
local function Proj(name, origin, radius)
local proj = {}
proj.name = name
proj.lon, proj.lat = unpack(origin or {0, 0})
proj.lon, proj.lat = rad(proj.lon), rad(proj.lat)
proj.r = radius or 6378137
return setmetatable(proj, projs[name])
end
-- == Frames ==
--[[
A frame stores information that specify the relation between the Earth's
geometry (geodesy) and a particular map geometry (usually in 2D). Each map has a
frame over which multiple layers of entities are drawn. There are two parameters
that define a unique frame:
* a projection;
* a bounding box on the projected (plane) space.
The projection parameter must be fully specified, including the center of the
projection, the orientation of the projection and the Earth model used (sphere
or ellipsoid) along with its parameters.
The bounding box is specified as two points, determining minimal an maximal
coordinates. The coordinate system for the bounding box is the projected one,
but without scale, i.e. with meters as unit.
]]
local sep = ":"
local Frame = {}
Frame.__index = Frame
function Frame:fit(x, y)
x = (x - self.bbox.x0) * self.s
y = self.h - (y - self.bbox.y0) * self.s
return x, y
end
function Frame:map(lon, lat)
local x, y = self.proj:map(lon, lat)
return self:fit(x, y)
end
function Frame:set_height(h)
local mw = self.bbox.x1 - self.bbox.x0
local mh = self.bbox.y1 - self.bbox.y0
self.h = h
self.s = h / mh
self.w = math.floor(mw * self.s + 0.5)
end
function Frame:add_margin(m)
local f = (self.h + m) / self.h
self.s = self.s / f
local mw = self.bbox.x1 - self.bbox.x0
local mh = self.bbox.y1 - self.bbox.y0
local cx = (self.bbox.x0 + self.bbox.x1) / 2
local cy = (self.bbox.y0 + self.bbox.y1) / 2
self.bbox.x0 = cx - mw/2 * f
self.bbox.x1 = cx + mw/2 * f
self.bbox.y0 = cy - mh/2 * f
self.bbox.y1 = cy + mh/2 * f
end
function Frame:fitted(polys)
self.touched = false
return function()
local points = polys()
if points then
return function()
local point = points()
if point then
local x, y = unpack(point)
x, y = self:fit(x, y)
if x >= 0 and x < self.w and y >= 0 and y < self.h then
self.touched = true
end
return {x, y}
end
end
end
end
end
function Frame:mapped(polys)
self.touched = false
return function()
local points = polys()
if points then
return function()
local point = points()
if point then
local lon, lat = unpack(point)
local x, y = self:map(lon, lat)
if x >= 0 and x < self.w and y >= 0 and y < self.h then
self.touched = true
end
return {x, y}
end
end
end
end
end
function Frame:save(fname)
local frm = io.open(fname, "w")
local model = self.proj:model()
frm:write("type", sep, model.type, "\n")
if model.type == "ellipsoid" then
frm:write("a", sep, model.a, "\n")
frm:write("b", sep, model.b, "\n")
frm:write("e", sep, model.e, "\n")
frm:write("f", sep, model.f, "\n")
elseif model.type == "sphere" then
frm:write("r", sep, model.r, "\n")
end
frm:write("proj", sep, self.proj.name, "\n")
frm:write("lon", sep, deg(self.proj.lon), "\n")
frm:write("lat", sep, deg(self.proj.lat), "\n")
frm:write("x0", sep, self.bbox.x0, "\n")
frm:write("y0", sep, self.bbox.y0, "\n")
frm:write("x1", sep, self.bbox.x1, "\n")
frm:write("y1", sep, self.bbox.y1, "\n")
frm:close()
end
local function new_frame(proj, bbox)
local self = setmetatable({}, Frame)
self.proj = proj
self.bbox = bbox
self.w, self.h, self.s = bbox.x1-bbox.x0, bbox.y1-bbox.y0, 1
return self
end
local function load_frame(fname)
local self = setmetatable({}, Frame)
local frm = io.open(fname, "r")
local function get(field)
local line = frm:read()
local got = line:sub(1, #field)
assert(got == field, "expected field "..field.." but got "..got)
return line:sub(#field+#sep+1)
end
local model = {}
model.type = get "type"
if model.type == "ellipsoid" then
model.a = tonumber(get "a")
model.b = tonumber(get "b")
model.e = tonumber(get "e")
model.f = tonumber(get "f")
elseif model.type == "sphere" then
model.r = tonumber(get "r")
end
local proj_name = get "proj"
local proj_lon = tonumber(get "lon")
local proj_lat = tonumber(get "lat")
proj = Proj(proj_name, {proj_lon, proj_lat}, model.r)
local bbox = {}
bbox.x0 = tonumber(get "x0")
bbox.y0 = tonumber(get "y0")
bbox.x1 = tonumber(get "x1")
bbox.y1 = tonumber(get "y1")
frm:close()
return new_frame(proj, bbox)
end
return {
distance=distance, bbox=bbox, centroid=centroid, Proj=Proj,
new_frame=new_frame, load_frame=load_frame
}