forked from ikostrikov/pytorch-a2c-ppo-acktr-gail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
envs.py
executable file
·61 lines (52 loc) · 1.81 KB
/
envs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import numpy as np
import gym
from gym.spaces.box import Box
from baselines import bench
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
try:
import dm_control2gym
except ImportError:
pass
try:
import pybullet_envs
import roboschool
except ImportError:
pass
def make_env(env_id, seed, rank, log_dir, clip_rewards=False):
def _thunk():
if env_id.startswith("dm"):
_, domain, task = env_id.split('.')
env = dm_control2gym.make(domain_name=domain, task_name=task)
else:
env = gym.make(env_id)
is_atari = hasattr(gym.envs, 'atari') and isinstance(env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
if is_atari:
env = make_atari(env_id)
env.seed(seed + rank)
if log_dir is not None:
env = bench.Monitor(env, os.path.join(log_dir, str(rank)))
if is_atari:
env = wrap_deepmind(env, clip_rewards=clip_rewards)
# If the input has shape (W,H,3), wrap for PyTorch convolutions
obs_shape = env.observation_space.shape
if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
env = WrapPyTorch(env, is_atari=is_atari)
return env
return _thunk
class WrapPyTorch(gym.ObservationWrapper):
def __init__(self, env=None, is_atari=False):
super(WrapPyTorch, self).__init__(env)
obs_shape = self.observation_space.shape
if is_atari:
dtype=np.uint8
else:
dtype=np.float32
self.observation_space = Box(
self.observation_space.low[0,0,0],
self.observation_space.high[0,0,0],
[obs_shape[2], obs_shape[1], obs_shape[0]],
dtype=dtype
)
def observation(self, observation):
return observation.transpose(2, 0, 1)