-
Notifications
You must be signed in to change notification settings - Fork 213
/
EditDistance.h
64 lines (59 loc) · 1.92 KB
/
EditDistance.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/*
Author: Annie Kim, anniekim.pku@gmail.com
Date: Apr 7, 2013
Update: Sep 28, 2013
Problem: Edit Distance
Difficulty: Medium
Source: http://leetcode.com/onlinejudge#question_72
Notes:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
Solution: Dynamic Programming.
1. Time: O(mn) Space: O(mn)
2. Time: O(mn) Space: O(n);
*/
class Solution {
public:
int minDistance(string word1, string word2) {
return minDistance_2(word1, word2);
}
int minDistance_1(string word1, string word2) {
int M = word1.size(), N = word2.size();
int dp[N+1][M+1];
for (int j = 0; j <= M; j++)
dp[0][j] = j;
for (int i = 0; i <= N; i++)
dp[i][0] = i;
for (int i = 1; i <= N; i++)
for (int j = 1; j <= M; j++)
if (word2[i-1] == word1[j-1])
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j])) + 1;
return dp[N][M];
}
int minDistance_2(string word1, string word2) {
int M = word1.size(), N = word2.size();
int dp[N+1];
for (int j = 0; j <= N; ++j)
dp[j] = j;
for (int i = 1; i <= M; ++i)
{
int upperLeftBackup = dp[0];
dp[0] = i;
for (int j = 1; j <= N; ++j)
{
int upperLeft = upperLeftBackup;
upperLeftBackup = dp[j];
if (word1[i-1] == word2[j-1])
dp[j] = upperLeft;
else
dp[j] = min(min(dp[j-1], dp[j]), upperLeft) + 1;
}
}
return dp[N];
}
};