-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot.py
501 lines (471 loc) · 15.4 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from approximations import *
import os
import argparse
import json
def json_fetcher(file_name, property="acc"):
with open(file_name) as file:
acc = json.load(file)[property]
file.close()
return acc
def sort_file_names_by_test_acc(file_names):
l = [(file_name, json_fetcher(file_name, "acc")) for file_name in file_names]
comp = lambda pair: pair[1]
l.sort(key=comp)
l.reverse()
return l
def plot_functions(ax, fts, xbounds, numPoints=5000):
# for each f \in fts, plots f(x) for x \in xbounds, with numPoints points
xs, xf = xbounds
x = torch.tensor([xs + i * (xf - xs) / numPoints for i in range(numPoints + 1)])
for label, f, color in fts:
y = f(x)
ax.plot(x, y, color, label=label)
def plot_acc_for_approx(ax, poly_degrees, file_namer, label=None, color=None):
file_names = list(map(file_namer, poly_degrees))
test_accs = list(map(json_fetcher, file_names))
ax.plot(poly_degrees, test_accs, color, label=label)
def plot_total_profiles(ax, file_name, label=None, color=None):
totals = json_fetcher(file_name, "total")
ax.plot(list(range(len(totals))), totals, color, label=label)
def plot_layerwise_profiles(ax, file_namer, label=None, color=None):
# TODO implement this
pass
if __name__ == "__main__":
# fmt: off
parser = argparse.ArgumentParser(description="training CIFAR-10")
parser.add_argument("--save_dir", default="./plots", help="plotted images path")
parser.add_argument("--log_dir", default="./logs", help="log path that is generated by ./all_eval.sh")
# fmt: on
args = parser.parse_args()
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
# chebyshev.png: Chebyshev's absolute function approximation polynomials
plt.clf()
_, ax = plt.subplots()
plot_functions(
ax,
fts=[
("Abs", lambda x: abs_block(x, -1, "naive"), "b"),
("Chebyshev 5", lambda x: abs_block(x, 5, "chebyshev"), "g--"),
("Chebyshev 10", lambda x: abs_block(x, 10, "chebyshev"), "c--"),
("Chebyshev 15", lambda x: abs_block(x, 15, "chebyshev"), "r--"),
],
xbounds=(-1.1, 1.1),
)
ax.set_ylim(-0.1, 1.1)
ax.set_title("Chebyshev Approximation for Abs")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "chebyshev.png"))
# remez.png: Remez's absolute function approximation polynomials
plt.clf()
_, ax = plt.subplots()
plot_functions(
ax,
fts=[
("Abs", lambda x: abs_block(x, -1, "naive"), "b"),
("Remez 5", lambda x: abs_block(x, 5, "remez"), "g--"),
("Remez 10", lambda x: abs_block(x, 10, "remez"), "c--"),
("Remez 15", lambda x: abs_block(x, 15, "remez"), "r--"),
],
xbounds=(-1.1, 1.1),
)
ax.set_ylim(-0.1, 1.1)
ax.set_title("Remez's Algorithm for Abs")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "remez.png"))
# relu.png: Approximation polynomials of ReLU
plt.clf()
_, ax = plt.subplots()
plot_functions(
ax,
fts=[
("ReLU", lambda x: relu_block(x, -1, "naive"), "b"),
("Chebyshev 7", lambda x: relu_block(x, 7, "chebyshev"), "g--"),
("Remez 7", lambda x: relu_block(x, 7, "remez"), "r--"),
],
xbounds=(-1.5, 1.5),
)
ax.set_ylim(-0.1, 1.1)
ax.set_title("ReLU Approximations")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "relu.png"))
# leaky.png: Affects of leaky method
plt.clf()
_, ax = plt.subplots()
poly_degrees = list(range(5, 15 + 1, 1))
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev L1",
color="bo-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_remez_{x}_1e-2.json"
),
label="Remez L1",
color="ro-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_leaky_l1_act_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev Leaky L1",
color="go-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_leaky_l1_act_tuned_remez_{x}_1e-2.json"
),
label="Remez Leaky L1",
color="mo-",
)
ax.set_xticks(poly_degrees)
ax.set_ylim(0.5, 1.05)
ax.set_title("Affects of Leaky ReLU Option for L1 Act Decay")
ax.set_xlabel("poly degree")
ax.set_ylabel("test acc")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "leaky.png"))
# leaky.png: Affects of leaky method
plt.clf()
_, ax = plt.subplots()
poly_degrees = list(range(5, 15 + 1, 1))
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l2_act_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev L2",
color="bo-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l2_act_tuned_remez_{x}_1e-2.json"
),
label="Remez L2",
color="ro-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_leaky_l2_act_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev Leaky L2",
color="go-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_leaky_l2_act_tuned_remez_{x}_1e-2.json"
),
label="Remez Leaky L2",
color="mo-",
)
ax.set_xticks(poly_degrees)
ax.set_ylim(0.25, 1.05)
ax.set_title("Affects of Leaky ReLU Option for L2 Act Decay")
ax.set_xlabel("poly degree")
ax.set_ylabel("test acc")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "leaky_l2.png"))
# norm.png: Affects of norms for activation decays
plt.clf()
_, ax = plt.subplots()
poly_degrees = list(range(5, 15 + 1, 1))
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev L1",
color="bo-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_remez_{x}_1e-2.json"
),
label="Remez L1",
color="ro-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_leaky_l2_act_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev Leaky L2",
color="go-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_leaky_l2_act_tuned_remez_{x}_1e-2.json"
),
label="Remez Leaky L2",
color="mo-",
)
ax.set_xticks(poly_degrees)
ax.set_ylim(0.5, 1.05)
ax.set_title("Affects of Activation Decay Norms")
ax.set_xlabel("poly degree")
ax.set_ylabel("test acc")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "norm.png"))
# decay.png: Affects of activation decays' strengths
plt.clf()
_, ax = plt.subplots()
poly_degrees = list(range(5, 15 + 1, 1))
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev 1e-2",
color="bo-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_remez_{x}_1e-2.json"
),
label="Remez 1e-2",
color="ro-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_chebyshev_{x}_1e-3.json"
),
label="Chebyshev 1e-3",
color="go-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_remez_{x}_1e-3.json"
),
label="Remez 1e-3",
color="mo-",
)
ax.set_xticks(poly_degrees)
ax.set_ylim(0.5, 1.05)
ax.set_title("Affects of Final Activation Decay Strengths")
ax.set_xlabel("poly degree")
ax.set_ylabel("test acc")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "decay.png"))
# finetune.png: Affects of finetuning stage
plt.clf()
_, ax = plt.subplots()
poly_degrees = list(range(5, 15 + 1, 1))
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev Fine-tuned",
color="bo-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_remez_{x}_1e-2.json"
),
label="Remez Fine-tuned",
color="ro-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_chebyshev_{x}.json"
),
label="Chebyshev Just Replaced",
color="go-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_remez_{x}.json"
),
label="Remez Just Replaced",
color="mo-",
)
ax.set_xticks(poly_degrees)
ax.set_ylim(0.05, 1.05)
ax.set_title("Fine-tuning Phase v.s. Just Switching into Approx")
ax.set_xlabel("poly degree")
ax.set_ylabel("test acc")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "finetune.png"))
# act.png: Affects of large activatin decay stage
plt.clf()
_, ax = plt.subplots()
poly_degrees = list(range(5, 15 + 1, 1))
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev + Large Act Phase",
color="bo-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_act_tuned_remez_{x}_1e-2.json"
),
label="Remez + Large Act Phase",
color="ro-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_tuned_chebyshev_{x}_1e-2.json"
),
label="Chebyshev w/o Large Act Phase",
color="go-",
)
plot_acc_for_approx(
ax,
poly_degrees=poly_degrees,
file_namer=lambda x: os.path.join(
args.log_dir, f"simple_mnist_l1_tuned_remez_{x}_1e-2.json"
),
label="Remez w/o Large Act Phase",
color="mo-",
)
ax.set_xticks(poly_degrees)
ax.set_ylim(0.05, 1.05)
ax.set_title("Fine-tuning Phase v.s. Just Switching into Approx")
ax.set_title("Affect of Large Act Decay Phase before Fine-tuning")
ax.set_xlabel("poly degree")
ax.set_ylabel("test acc")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "act.png"))
# finetune_profiles.png: Activation magnitude profiles for naive vs finetuned
plt.clf()
_, ax = plt.subplots()
xticklabels = [f"<2^{n}" for n in range(-4, 9)] + [">2^8"]
plot_total_profiles(
ax,
file_name=os.path.join(
args.log_dir, "simple_mnist_l1_act_tuned_chebyshev_10_1e-2.json"
),
label="Chebyshev deg 10 Fine-tuned",
color="bo-",
)
plot_total_profiles(
ax,
file_name=os.path.join(
args.log_dir, "simple_mnist_l1_act_tuned_remez_10_1e-2.json"
),
label="Remez deg 10 Fine-tuned",
color="ro-",
)
plot_total_profiles(
ax,
file_name=os.path.join(args.log_dir, "simple_mnist_l1_chebyshev_10.json"),
label="Chebyshev deg 10 Just Replaced",
color="go-",
)
plot_total_profiles(
ax,
file_name=os.path.join(args.log_dir, "simple_mnist_l1_remez_10.json"),
label="Remez deg 10 Just Replaced",
color="mo-",
)
ax.set_xticks(list(range(len(xticklabels))))
ax.set_xticklabels(xticklabels, fontsize=8, rotation=10)
ax.set_yscale("symlog")
ax.set_ybound(-1, 10 ** 9)
ax.set_title("Fine-tuning Phase v.s. Just Switching into Approx")
ax.set_title("Affects of Fine-tuning for Activation Magnitude Occurences")
ax.set_xlabel("activation magnitude")
ax.set_ylabel("occurences")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "finetune_profile.png"))
all_log_file_names = [
os.path.join(args.log_dir, log) for log in os.listdir(args.log_dir)
]
sorted_test_acc = sort_file_names_by_test_acc(all_log_file_names)
print(sorted_test_acc[:20])
# tops_profiles.png: Plotting top-ranked profiles
plt.clf()
_, ax = plt.subplots()
xticklabels = [f"<2^{n}" for n in range(-4, 9)] + [">2^8"]
plot_total_profiles(
ax,
file_name=os.path.join(
args.log_dir, "simple_mnist_leaky_l2_act_tuned_chebyshev_7_1e-2.json"
),
label="Chebyshev Leaky L2(0.01) deg 7 (acc: 0.9871)",
color="bo-",
)
plot_total_profiles(
ax,
file_name=os.path.join(
args.log_dir, "simple_mnist_l1_act_tuned_chebyshev_7_1e-3.json"
),
label="Chebyshev L1(0.001) deg 7 (acc: 0.9839)",
color="ro-",
)
plot_total_profiles(
ax,
file_name=os.path.join(
args.log_dir, "simple_mnist_leaky_l2_act_tuned_remez_7_1e-2.json"
),
label="Remez Leaky L2(0.01) deg 7 (acc: 0.9821)",
color="go-",
)
plot_total_profiles(
ax,
file_name=os.path.join(
args.log_dir, "simple_mnist_l1_act_tuned_remez_6_1e-3.json"
),
label="Remez L1(0.001) deg 6 (acc: 0.9811)",
color="mo-",
)
ax.set_xticks(list(range(len(xticklabels))))
ax.set_xticklabels(xticklabels, fontsize=8, rotation=10)
ax.set_yscale("symlog")
ax.set_ybound(-1, 10 ** 9)
ax.set_title("Fine-tuning Phase v.s. Just Switching into Approx")
ax.set_title("Activation Magnitude Occurences of Top Accuracies Configs")
ax.set_xlabel("activation magnitude")
ax.set_ylabel("occurences")
ax.legend()
plt.savefig(os.path.join(args.save_dir, "tops_profile.png"))