-
Notifications
You must be signed in to change notification settings - Fork 18
/
gradio_demo.py
1134 lines (993 loc) · 50.7 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import subprocess
import gradio as gr
import torch
import base64
import io
from PIL import Image
from transformers import (
LlavaNextProcessor, LlavaNextForConditionalGeneration,
T5EncoderModel, T5Tokenizer
)
from transformers import (
AutoProcessor, AutoModelForCausalLM, GenerationConfig,
T5EncoderModel, T5Tokenizer
)
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FlowMatchHeunDiscreteScheduler, FluxPipeline
from onediffusion.diffusion.pipelines.onediffusion import OneDiffusionPipeline
from onediffusion.models.denoiser.nextdit import NextDiT
from onediffusion.dataset.utils import get_closest_ratio, ASPECT_RATIO_512
from typing import List, Optional
import matplotlib
import numpy as np
import cv2
import argparse
from PIL import Image
import csv
import ast
from gradio import components, utils
from typing import List, Any
from types import MethodType
os.environ["GRADIO_EXAMPLES_CACHE"] = "./assets/gradio_cached_examples"
# Task-specific tokens
TASK2SPECIAL_TOKENS = {
"text2image": "[[text2image]]",
"deblurring": "[[deblurring]]",
"inpainting": "[[image_inpainting]]",
"canny": "[[canny2image]]",
"depth2image": "[[depth2image]]",
"hed2image": "[[hed2img]]",
"pose2image": "[[pose2image]]",
"semanticmap2image": "[[semanticmap2image]]",
"boundingbox2image": "[[boundingbox2image]]",
"image_editing": "[[image_editing]]",
"faceid": "[[faceid]]",
"multiview": "[[multiview]]",
"subject_driven": "[[subject_driven]]"
}
NEGATIVE_PROMPT = "monochrome, greyscale, low-res, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation"
class LlavaCaptionProcessor:
def __init__(self):
model_name = "llava-hf/llama3-llava-next-8b-hf"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.processor = LlavaNextProcessor.from_pretrained(model_name)
self.model = LlavaNextForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, low_cpu_mem_usage=True
).to(device)
self.SPECIAL_TOKENS = "assistant\n\n\n"
def generate_response(self, image: Image.Image, msg: str) -> str:
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": msg}]}]
with torch.no_grad():
prompt = self.processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = self.processor(prompt, image, return_tensors="pt").to(self.model.device)
output = self.model.generate(**inputs, max_new_tokens=200)
response = self.processor.decode(output[0], skip_special_tokens=True)
return response.split(msg)[-1].strip()[len(self.SPECIAL_TOKENS):]
def process(self, images: List[Image.Image], msg: str = None) -> List[str]:
if msg is None:
msg = f"Describe the contents of the photo in 150 words or fewer."
try:
return [self.generate_response(img, msg) for img in images]
except Exception as e:
print(f"Error in process: {str(e)}")
raise
class MolmoCaptionProcessor:
def __init__(self):
pretrained_model_name = 'cyan2k/molmo-7B-D-bnb-4bit'
self.processor = AutoProcessor.from_pretrained(
pretrained_model_name,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
self.model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
def generate_response(self, image: Image.Image, msg: str) -> str:
inputs = self.processor.process(
images=[image],
text=msg
)
# Move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(self.model.device).unsqueeze(0) for k, v in inputs.items()}
# Generate output
output = self.model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=250, stop_strings="<|endoftext|>"),
tokenizer=self.processor.tokenizer
)
# Only get generated tokens and decode them to text
generated_tokens = output[0, inputs['input_ids'].size(1):]
return self.processor.tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
def process(self, images: List[Image.Image], msg: str = None) -> List[str]:
if msg is None:
msg = f"Describe the contents of the photo in 150 words or fewer."
try:
return [self.generate_response(img, msg) for img in images]
except Exception as e:
print(f"Error in process: {str(e)}")
raise
class PlaceHolderCaptionProcessor:
def __init__(self):
pass
def generate_response(self, image: Image.Image, msg: str) -> str:
return ""
def process(self, images: List[Image.Image], msg: str = None) -> List[str]:
return [""] * len(images)
def initialize_models(captioner_name):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
pipeline = OneDiffusionPipeline.from_pretrained("lehduong/OneDiffusion").to(device=device, dtype=torch.bfloat16)
if captioner_name == 'molmo':
captioner = MolmoCaptionProcessor()
elif captioner_name == 'llava':
captioner = LlavaCaptionProcessor()
else:
captioner = PlaceHolderCaptionProcessor()
return pipeline, captioner
def colorize_depth_maps(
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
):
"""
Colorize depth maps with reversed colors.
"""
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().squeeze().numpy()
elif isinstance(depth_map, np.ndarray):
depth = depth_map.copy().squeeze()
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# Normalize depth values to [0, 1]
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
# Invert the depth values to reverse the colors
depth = 1 - depth
# Use the colormap
cm = matplotlib.colormaps[cmap]
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # values from 0 to 1
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
if valid_mask is not None:
if isinstance(depth_map, torch.Tensor):
valid_mask = valid_mask.detach().numpy()
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
if valid_mask.ndim < 3:
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
else:
valid_mask = valid_mask[:, np.newaxis, :, :]
valid_mask = np.repeat(valid_mask, 3, axis=1)
img_colored_np[~valid_mask] = 0
if isinstance(depth_map, torch.Tensor):
img_colored = torch.from_numpy(img_colored_np).float()
elif isinstance(depth_map, np.ndarray):
img_colored = img_colored_np
return img_colored
def format_prompt(task_type: str, captions: List[str]) -> str:
if not captions:
return ""
if task_type == "faceid":
img_prompts = [f"[[img{i}]] {caption}" for i, caption in enumerate(captions, start=1)]
return f"[[faceid]] [[img0]] insert/your/caption/here {' '.join(img_prompts)}"
elif task_type == "image_editing":
return f"[[image_editing]] insert/your/instruction/here"
elif task_type == "semanticmap2image":
return f"[[semanticmap2image]] <#00ffff Cyan mask: insert/concept/to/segment/here> {captions[0]}"
elif task_type == "boundingbox2image":
return f"[[boundingbox2image]] <#00ffff Cyan boundingbox: insert/concept/to/segment/here> {captions[0]}"
elif task_type == "multiview":
img_prompts = captions[0]
return f"[[multiview]] {img_prompts}"
elif task_type == "subject_driven":
return f"[[subject_driven]] <item: insert/item/here> [[img0]] insert/your/target/caption/here [[img1]] {captions[0]}"
else:
return f"{TASK2SPECIAL_TOKENS[task_type]} {captions[0]}"
def update_prompt(images: List[Image.Image], task_type: str, custom_msg: str = None):
if not images:
return format_prompt(task_type, []), "Please upload at least one image!"
try:
captions = captioner.process(images, custom_msg)
if not captions:
return "", "No valid images found!"
prompt = format_prompt(task_type, captions)
return prompt, f"Generated {len(captions)} captions successfully!"
except Exception as e:
return "", f"Error generating captions: {str(e)}"
def generate_image(images: List[Image.Image], prompt: str, negative_prompt: str, num_inference_steps: int, guidance_scale: float,
denoise_mask: List[str], task_type: str, azimuth: str, elevation: str, distance: str, focal_length: float,
height: int = 1024, width: int = 1024, scale_factor: float = 1.0, scale_watershed: float = 1.0,
noise_scale: float = None, progress=gr.Progress()):
try:
img2img_kwargs = {
'prompt': prompt,
'negative_prompt': negative_prompt,
'num_inference_steps': num_inference_steps,
'guidance_scale': guidance_scale,
'height': height,
'width': width,
'forward_kwargs': {
'scale_factor': scale_factor,
'scale_watershed': scale_watershed
},
'noise_scale': noise_scale # Added noise_scale here
}
if task_type == 'multiview':
# Parse azimuth, elevation, and distance into lists, allowing 'None' values
azimuths = [float(a.strip()) if a.strip().lower() != 'none' else None for a in azimuth.split(',')] if azimuth else []
elevations = [float(e.strip()) if e.strip().lower() != 'none' else None for e in elevation.split(',')] if elevation else []
distances = [float(d.strip()) if d.strip().lower() != 'none' else None for d in distance.split(',')] if distance else []
num_views = max(len(images), len(azimuths), len(elevations), len(distances))
if num_views == 0:
return None, "At least one image or camera parameter must be provided."
total_components = []
for i in range(num_views):
total_components.append(f"image_{i}")
total_components.append(f"camera_pose_{i}")
denoise_mask_int = [1 if comp in denoise_mask else 0 for comp in total_components]
if len(denoise_mask_int) != len(total_components):
return None, f"Denoise mask length mismatch: expected {len(total_components)} components."
# Pad the input lists to num_views length
images_padded = images + [] * (num_views - len(images)) # Do not add None
azimuths_padded = azimuths + [None] * (num_views - len(azimuths))
elevations_padded = elevations + [None] * (num_views - len(elevations))
distances_padded = distances + [None] * (num_views - len(distances))
# Prepare values
img2img_kwargs.update({
'image': images_padded,
'multiview_azimuths': azimuths_padded,
'multiview_elevations': elevations_padded,
'multiview_distances': distances_padded,
'multiview_focal_length': focal_length, # Pass focal_length here
'is_multiview': True,
'denoise_mask': denoise_mask_int,
# 'predict_camera_poses': True,
})
else:
total_components = ["image_0"] + [f"image_{i+1}" for i in range(len(images))]
denoise_mask_int = [1 if comp in denoise_mask else 0 for comp in total_components]
if len(denoise_mask_int) != len(total_components):
return None, f"Denoise mask length mismatch: expected {len(total_components)} components."
img2img_kwargs.update({
'image': images,
'denoise_mask': denoise_mask_int
})
progress(0, desc="Generating image...")
if task_type == 'text2image':
output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
scale_factor=scale_factor,
scale_watershed=scale_watershed,
noise_scale=noise_scale # Added noise_scale here
)
else:
output = pipeline.img2img(**img2img_kwargs)
progress(1, desc="Done!")
# Process the output images if task is 'depth2image' and predicting depth
if task_type == 'depth2image' and denoise_mask_int[-1] == 1:
processed_images = []
for img in output.images:
depth_map = np.array(img.convert('L')) # Convert to grayscale numpy array
min_depth = depth_map.min()
max_depth = depth_map.max()
colorized = colorize_depth_maps(depth_map, min_depth, max_depth)[0]
colorized = np.transpose(colorized, (1, 2, 0))
colorized = (colorized * 255).astype(np.uint8)
img_colorized = Image.fromarray(colorized)
processed_images.append(img_colorized)
output_images = processed_images + output.images
elif task_type in ['boundingbox2image', 'semanticmap2image'] and denoise_mask_int == [0,1] and images:
# Interpolate between input and output images
processed_images = []
for input_img, output_img in zip(images, output.images):
input_img_resized = input_img.resize(output_img.size)
blended_img = Image.blend(input_img_resized, output_img, alpha=0.5)
processed_images.append(blended_img)
output_images = processed_images + output.images
else:
output_images = output.images
return output_images, "Generation completed successfully!"
except Exception as e:
return None, f"Error during generation: {str(e)}"
def update_denoise_checkboxes(images_state: List[Image.Image], task_type: str, azimuth: str, elevation: str, distance: str):
if task_type == 'multiview':
azimuths = [a.strip() for a in azimuth.split(',')] if azimuth else []
elevations = [e.strip() for e in elevation.split(',')] if elevation else []
distances = [d.strip() for d in distance.split(',')] if distance else []
images_len = len(images_state)
num_views = max(images_len, len(azimuths), len(elevations), len(distances))
if num_views == 0:
return gr.update(choices=[], value=[]), "Please provide at least one image or camera parameter."
# Pad lists to the same length
azimuths += ['None'] * (num_views - len(azimuths))
elevations += ['None'] * (num_views - len(elevations))
distances += ['None'] * (num_views - len(distances))
# Do not add None to images_state
labels = []
values = []
for i in range(num_views):
labels.append(f"image_{i}")
labels.append(f"camera_pose_{i}")
# Default behavior: condition on provided inputs, generate missing ones
if i >= images_len:
values.append(f"image_{i}")
if azimuths[i].lower() == 'none' or elevations[i].lower() == 'none' or distances[i].lower() == 'none':
values.append(f"camera_pose_{i}")
return gr.update(choices=labels, value=values)
else:
labels = ["image_0"] + [f"image_{i+1}" for i in range(len(images_state))]
values = ["image_0"]
return gr.update(choices=labels, value=values)
def apply_mask(images_state):
if len(images_state) < 2:
return None, "Please upload at least two images: first as the base image, second as the mask."
base_img = images_state[0]
mask_img = images_state[1]
# Convert images to arrays
base_arr = np.array(base_img)
mask_arr = np.array(mask_img)
# Convert mask to grayscale
if mask_arr.ndim == 3:
gray_mask = cv2.cvtColor(mask_arr, cv2.COLOR_RGB2GRAY)
else:
gray_mask = mask_arr
# Create a binary mask where non-black pixels are True
binary_mask = gray_mask > 10
# Define the gray color
gray_color = np.array([128, 128, 128], dtype=np.uint8)
# Apply gray color where mask is True
masked_arr = base_arr.copy()
masked_arr[binary_mask] = gray_color
masked_img = Image.fromarray(masked_arr)
return [masked_img], "Mask applied successfully!"
def process_images_for_task_type(images_state: List[Image.Image], task_type: str):
# No changes needed here since we are processing the output images
return images_state, images_state
def get_example():
# Define example configurations and save images to temporary files
examples = [
[
"Text to Image", # Example name
None, # Preview column
[], # Empty list instead of None for input images
"[[text2image]] A bipedal black cat wearing a huge oversized witch hat, a wizards robe, casting a spell,in an enchanted forest. The scene is filled with fireflies and moss on surrounding rocks and trees",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"text2image", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
1024, # height
1024, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"ID Customization with 1 images", # Example name - new column
"./assets/examples/id_customization/chika/image_0.png", # Preview first image
[
"./assets/examples/id_customization/chika/image_0.png",
], # Input image paths
"[[faceid]] [[img0]] photo depict a female anime character with pink hair and blue eyes, sitting in a fine dining restaurant, black dress, smiling open mouth widely [[img1]] The photo depicts an anime-style cartoon character of a young woman with pink hair and blue eyes. She's wearing a black dress with white collar and cuffs, adorned with a red bow at the neckline and a red bow on the chest. A black bow tie decorates her hair. The character is standing in a classroom, with a green chalkboard featuring Asian characters visible behind her. The classroom has a white ceiling with brown trim and a window with a green curtain. The woman has a cheerful expression and appears to be in motion, as her hair is flowing. The overall scene is colorful and vibrant, capturing a moment of everyday life in an anime-inspired setting.",
NEGATIVE_PROMPT,
75, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"faceid", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
576, # height
448, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"ID Customization with multiple input images", # Example name - new column
"./assets/examples/id_customization/chenhao/image_0.png", # Preview first image
[
"./assets/examples/id_customization/chenhao/image_0.png",
"./assets/examples/id_customization/chenhao/image_1.png",
"./assets/examples/id_customization/chenhao/image_2.png",
], # Input image paths
"[[faceid]] [[img0]] A woman with dark hair styled in an intricate updo, wearing a traditional orange and black outfit with elaborate gold embroidery. She has an elegant, poised expression, standing against a serene outdoor setting with classical architecture [[img1]] A young Asian woman with long dark hair and brown eyes smiles at the camera. She wears a red tank top with white flowers and green leaves. The background is blurred, with white and blue tones visible. The image has a slightly grainy quality. [[img2]] A young Asian woman in traditional attire stands against a brown background. She wears a white dress adorned with purple and green floral patterns. Her hair is styled in a bun, and she holds a small white lace umbrella with a gold handle. The image captures her elegant appearance and cultural dress. [[img3]] A woman in traditional Asian attire stands in front of a blurred building. She wears a green robe with floral designs and a black hat with lace. A man in a red robe and black hat stands behind her. The scene appears to be set in an Asian country.",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"faceid", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
608, # height
416, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Image to Multiview", # Example name - new column
"assets/examples/images/cat_on_table.webp", # Preview column - no image for text-to-multiview
["assets/examples/images/cat_on_table.webp"], # No input images
"[[multiview]] A cat with orange and white fur sits on a round wooden table. The cat has striking green eyes and a pink nose. Its ears are perked up, and its tail is curled around its body. The background is blurred, showing a white wall, a wooden chair, and a wooden table with a white pot and green plant. A white curtain is visible on the right side. The cat's gaze is directed slightly to the right, and its paws are white. The overall scene creates a cozy, domestic atmosphere with the cat as the central focus.",
NEGATIVE_PROMPT,
60, # num_steps
4.0, # guidance_scale
["image_1", "image_2", "image_3"], # denoise_mask
"multiview", # task_type
"0,20,40,60", # azimuth - four views
"0,0,0,0", # elevation - different angles
"1.5,1.5,1.5,1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Semantic to Image", # Example name - new column
"assets/examples/semantic_map/dragon_birds_woman.webp", # Preview column
["assets/examples/semantic_map/dragon_birds_woman.webp"], # Input image path
"[[semanticmap2image]] <#00ffff Cyan mask: insert/concept/to/segment/here> A woman in a red dress with gold floral patterns stands in a traditional Japanese-style building. She has black hair and wears a gold choker and earrings. Behind her, a large orange and white dragon coils around the structure. Two white birds fly near her. The building features paper windows and a wooden roof with lanterns. The scene blends traditional Japanese architecture with fantastical elements, creating a mystical atmosphere.",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"semanticmap2image", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
672, # height
384, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Subject driven generation", # Example name - new column
"./assets/examples/subject_driven/chill_guy.jpg", # Preview column
["./assets/examples/subject_driven/chill_guy.jpg"], # Input image path
"[[subject_driven]] <item: cartoon dog> [[img0]] a cartoon character resembling a dog, sitting on a beach. The character has a long, narrow face with a black nose and brown eyes. It's wearing a gray sweatshirt, blue jeans rolled up at the bottom, and red sneakers with white soles. it has a slight smirk on its face [[img1]] The photo features a cartoon character resembling a do. The character has a long, narrow face with a black nose and brown eyes. It's wearing a gray sweatshirt, blue jeans rolled up at the bottom, and red sneakers with white soles. The character's hands are tucked into its pockets, and it has a slight smirk on its face. The background is a solid gray color, and the image has a hand-drawn, slightly blurry quality. The character's head is turned to the left, and its body is facing forward. The overall style is simple and cartoonish, with bold lines and limited shading.",
NEGATIVE_PROMPT,
70, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"subject_driven", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Depth to Image", # Example name - new column
"./assets/examples/depth/astronaut.webp", # Preview column
["./assets/examples/depth/astronaut.webp"], # Input image path
"[[depth2image]] The image depicts a futuristic astronaut standing on a rocky terrain with orange flowers. The astronaut is wearing a yellow suit with a helmet and is equipped with a backpack. The astronaut is looking up at a large, circular, glowing portal in the sky, which is surrounded by a halo of light. The portal is emitting a warm glow and is surrounded by a few butterflies. The sky is dark with stars, and there are distant mountains visible. The overall atmosphere of the image is one of exploration and wonder.",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"depth2image", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
608, # height
416, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Image to depth", # Example name - new column
"./assets/examples/images/cat.webp", # Preview column
["./assets/examples/images/cat.webp"], # Input image path
"[[depth2image]] A kitten sits in a small boat on a rainy lake. The kitten wears a pink sweater and hat with a pom-pom. It has orange and white fur, and its paws are visible. The scene is misty and atmospheric, with trees and mountains in the background.",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_1"], # denoise_mask
"depth2image", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Image Editing", # Example name - new column
"assets/examples/image_editing/astronaut.webp", # Preview column
["assets/examples/image_editing/astronaut.webp"], # Input image path
"[[image_editing]] change it to winter and snowy weather",
NEGATIVE_PROMPT,
60, # num_steps
3.2, # guidance_scale
["image_0"], # denoise_mask
"image_editing", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Text to Multiview", # Example name - new column
None, # Preview column - no image for text-to-multiview
[], # No input images
"[[multiview]] The 3D scene features a striking black raven perched on a weathered rock in a rugged, mountainous landscape. Its glossy feathers shimmer with iridescent highlights, adding depth and realism. The background reveals a misty valley with rolling hills and a solitary stone cottage, exuding a sense of isolation and mystery. The earthy tones of the terrain, scattered with rocks and tufts of grass, contrast beautifully with the raven's dark plumage. The atmosphere feels serene yet haunting, evoking themes of solitude and nature's quiet power.",
NEGATIVE_PROMPT,
60, # num_steps
4.0, # guidance_scale
["image_0", "image_1", "image_2", "image_3"], # denoise_mask
"multiview", # task_type
"0,30,60,90", # azimuth - four views
"0,10,15,20", # elevation - different angles
"1.5,1.5,1.5,1.5", # distance
1.3887, # focal_length
512, # height
512, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
[
"Inpainting with Black mask", # Example name - new column
"./assets/examples/inpainting/giorno.webp", # Preview column
["./assets/examples/inpainting/giorno.webp"], # Input image path
"[[image_inpainting]]",
NEGATIVE_PROMPT,
50, # num_steps
4.0, # guidance_scale
["image_0"], # denoise_mask
"image_inpainting", # task_type
"0", # azimuth
"0", # elevation
"1.5", # distance
1.3887, # focal_length
416, # height
576, # width
1.0, # scale_factor
1.0, # scale_watershed
1.0, # noise_scale
],
]
return examples
def run_for_examples(example_name, preview_image, image_paths, prompt, negative_prompt,
num_inference_steps, guidance_scale, denoise_mask, task_type,
azimuth, elevation, distance, focal_length, height, width,
scale_factor, scale_watershed, noise_scale):
try:
# Handle empty image paths or None
images_state = []
gallery_value = []
if image_paths: # Only process if image_paths is not None and not empty
if isinstance(image_paths, list) and len(image_paths) > 0:
for path in image_paths:
try:
if path is not None:
img = Image.open(path).convert('RGB')
images_state.append(img)
gallery_value.append(path)
except Exception as e:
print(f"Error loading image {path}: {str(e)}")
# Generate output images
output_images, status = generate_image(
images_state, prompt, negative_prompt, num_inference_steps, guidance_scale,
denoise_mask, task_type, azimuth, elevation, distance, focal_length,
height, width, scale_factor, scale_watershed, noise_scale
)
# For preview gallery - show actual loaded images if any
preview_images = images_state # if images_state else []
return output_images, status, gallery_value, images_state, preview_images
except Exception as e:
return None, f"Error in example generation: {str(e)}", [], [], []
def update_gallery_state(files, current_state):
"""Update image state when new files are uploaded or cleared"""
# Handle case when files is None or empty
if not files:
return [], [], [] # Return empty states for images, gallery, and preview
# Ensure files is a list
if not isinstance(files, list):
files = [files]
# Process new uploads
processed_images = []
for file in files:
try:
if isinstance(file, dict) and "name" in file: # Handle file dict from gradio
img_path = file["name"]
elif isinstance(file, str): # Handle direct file paths
img_path = file
elif isinstance(file, Image.Image): # Handle PIL Image objects
processed_images.append(file.convert('RGB'))
continue
else:
print(f"Skipping unsupported file type: {type(file)}")
continue
img_pil = Image.open(img_path).convert('RGB')
processed_images.append(img_pil)
except Exception as e:
return [], [], []
# If no images were successfully processed, return empty states
if not processed_images:
return [], [], []
# Return updated states and preview images
# processed_images for the image state
# files for the gallery state (original files)
# processed_images again for preview
return processed_images, files, processed_images
def delete_selected_images(selected_indices, images_state, gallery_state):
"""Delete selected images from gallery and state"""
if not selected_indices or not images_state:
return images_state, gallery_state, images_state, []
# Create lists of indices to keep
keep_indices = [i for i in range(len(images_state)) if i not in selected_indices]
# Update image state
updated_images = [images_state[i] for i in keep_indices]
# Update gallery state if it exists
updated_gallery = [gallery_state[i] for i in keep_indices] if gallery_state else []
return updated_images, updated_gallery, updated_images, []
def delete_all_images():
"""Delete all images"""
return [], [], [], []
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Start the Gradio demo with specified captioner.')
parser.add_argument('--captioner', type=str, choices=['molmo', 'llava', 'disable'], default='molmo', help='Captioner to use: molmo, llava, disable.')
args = parser.parse_args()
# Initialize models with the specified captioner
pipeline, captioner = initialize_models(args.captioner)
with gr.Blocks(title="OneDiffusion Demo") as demo:
gr.Markdown("""
# OneDiffusion Demo with (quantized) Molmo captioner
**Welcome to the OneDiffusion Demo!**
This application allows you to generate images based on your input prompts for various tasks. Here's how to use it:
1. **Select Task Type**: Choose the type of task you want to perform from the "Task Type" dropdown menu.
2. **Upload Images**: Drag and drop images directly onto the upload area, or click to select files from your device.
3. **Generate Captions**: **If you upload any images**, Click the "Generate Captions" button to format the text prompt according to chosen task. In this demo, you will **NEED** to provide the caption of each source image manually. We recommend using Molmo for captioning.
4. **Configure Generation Settings**: Expand the "Advanced Configuration" section to adjust parameters like the number of inference steps, guidance scale, image size, and more.
5. **Generate Images**: After setting your preferences, click the "Generate Image" button. The generated images will appear in the "Generated Images" gallery.
6. **Manage Images**: Use the "Delete Selected Images" or "Delete All Images" buttons to remove unwanted images from the gallery.
**Notes**:
- Check out the [Prompt Guide](https://github.com/lehduong/OneDiffusion/blob/main/PROMPT_GUIDE.md).
- For text-to-image:
+ simply enter your prompt in this format "[[text2image]] your/prompt/here" and press the "Generate Image" button.
- For boundingbox2image/semantic2image/inpainting etc tasks:
+ To perform condition-to-image such as semantic map to image, follow above steps
+ For image-to-condition e.g., image to depth, change the denoise_mask checkbox before generating images. You must UNCHECK image_0 box and CHECK image_1 box. Caption is not required for this task.
- For FaceID tasks:
+ Use 3 or 4 images if single input image does not give satisfactory results.
+ All images will be resized and center cropped to the input height and width. You should choose height and width so that faces in input images won't be cropped.
+ Model works best with close-up portrait (input and output) images.
+ If the model does not conform your text prompt, try using shorter caption for source image(s).
+ If you have non-human subjects and does not get satisfactory results, try "copying" part of caption of source images where it describes the properties of the subject e.g., a monster with red eyes, sharp teeth, etc.
- For Multiview generation:
+ The input camera elevation/azimuth ALWAYS starts with 0. If you want to generate images of azimuths 30,60,90 and elevations of 10,20,30 (wrt input image), the correct input azimuth is: `0, 30, 60, 90`; input elevation is `0,10,20,30`. The camera distance will be `1.5,1.5,1.5,1.5`
+ Only support square images (ideally in 512x512 resolution).
+ Ensure the number of elevations, azimuths, and distances are equal.
+ The model generally works well for 2-5 views (include both input and generated images). Since the model is trained with 3 views on 512x512 resolution, you might try scale_factor of [1.1; 1.5] and scale_watershed of [100; 400] for better extrapolation.
+ For better results:
1) try increasing num_inference_steps to 75-100.
2) avoid aggressively changes in target camera poses, for example to generate novel views at azimuth of 180, (simultaneously) generate 4 views with azimuth of 45, 90, 135, 180.
Enjoy creating images with OneDiffusion!
""")
with gr.Row():
with gr.Column():
images_state = gr.State([])
selected_indices_state = gr.State([])
with gr.Row():
# Replace gallery with File input
gallery = gr.File(
label="Input Images",
file_count="multiple",
type="filepath",
file_types=["image"]
)
# Add preview gallery
preview_gallery = gr.Gallery(
label="Image Preview",
show_label=True,
columns=2,
rows=2,
height="auto",
object_fit="contain"
)
with gr.Row():
delete_button = gr.Button("Delete Selected Images")
delete_all_button = gr.Button("Delete All Images")
task_type = gr.Dropdown(
choices=list(TASK2SPECIAL_TOKENS.keys()),
value="text2image",
label="Task Type"
)
captioning_message = gr.Textbox(
lines=2,
value="Describe the contents of the photo in 60 words.",
label="Custom message for captioner"
)
auto_caption_btn = gr.Button("Generate Captions")
with gr.Column():
prompt = gr.Textbox(
lines=3,
placeholder="Enter your prompt here or use auto-caption...",
label="Prompt"
)
negative_prompt = gr.Textbox(
lines=3,
value=NEGATIVE_PROMPT,
placeholder="Enter negative prompt here...",
label="Negative Prompt"
)
caption_status = gr.Textbox(label="Caption Status")
num_steps = gr.Slider(
minimum=1,
maximum=200,
value=50,
step=1,
label="Number of Inference Steps"
)
guidance_scale = gr.Slider(
minimum=0.1,
maximum=10.0,
value=4,
step=0.1,
label="Guidance Scale"
)
height = gr.Number(value=1024, label="Height")
width = gr.Number(value=1024, label="Width")
with gr.Accordion("Advanced Configuration", open=False):
with gr.Row():
denoise_mask_checkbox = gr.CheckboxGroup(
label="Denoise Mask",
choices=["image_0"],
value=["image_0"]
)
azimuth = gr.Textbox(
value="0",
label="Azimuths (degrees, comma-separated, 'None' for missing)"
)
elevation = gr.Textbox(
value="0",
label="Elevations (degrees, comma-separated, 'None' for missing)"
)
distance = gr.Textbox(
value="1.5",
label="Distances (comma-separated, 'None' for missing)"
)
focal_length = gr.Number(
value=1.3887,
label="Focal Length of camera for multiview generation"
)
scale_factor = gr.Number(value=1.0, label="Scale Factor")
scale_watershed = gr.Number(value=1.0, label="Scale Watershed")
noise_scale = gr.Number(value=1.0, label="Noise Scale") # Added noise_scale input
output_images = gr.Gallery(
label="Generated Images",
show_label=True,
columns=4,
rows=2,
height="auto",
object_fit="contain"
)
with gr.Column():
generate_btn = gr.Button("Generate Image")
# apply_mask_btn = gr.Button("Apply Mask")
status = gr.Textbox(label="Generation Status")
def update_height_width(images_state):
if images_state:
closest_ar = get_closest_ratio(
height=images_state[0].size[1],
width=images_state[0].size[0],
ratios=ASPECT_RATIO_512
)
height_val, width_val = int(closest_ar[0][0]), int(closest_ar[0][1])
else:
height_val, width_val = 1024, 1024 # Default values
return gr.update(value=height_val), gr.update(value=width_val)
# Update the image selection handler
def on_select(evt: gr.SelectData, selected_indices):
"""Handle image selection in gallery"""
if selected_indices is None:
selected_indices = []
if evt.index in selected_indices:
selected_indices.remove(evt.index)
else:
selected_indices.append(evt.index)
return selected_indices
# Connect gallery upload
gallery.upload(
fn=update_gallery_state,
inputs=[gallery, images_state],
outputs=[images_state, gallery, preview_gallery],
show_progress="full"
).then(
fn=update_height_width,
inputs=[images_state],
outputs=[height, width]
).then(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
# Update delete buttons connections
delete_button.click(
fn=delete_selected_images,
inputs=[selected_indices_state, images_state, gallery],
outputs=[images_state, gallery, preview_gallery, selected_indices_state]
).then(
fn=update_height_width,
inputs=[images_state],
outputs=[height, width]
).then(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
delete_all_button.click(
fn=delete_all_images,
inputs=[],
outputs=[images_state, gallery, preview_gallery, selected_indices_state]
).then(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
).then(
fn=update_height_width,
inputs=[images_state],
outputs=[height, width]
)
task_type.change(
fn=update_denoise_checkboxes,
inputs=[images_state, task_type, azimuth, elevation, distance],
outputs=[denoise_mask_checkbox]
)
azimuth.change(
fn=update_denoise_checkboxes,