-
Notifications
You must be signed in to change notification settings - Fork 12
/
adanip_exp.py
289 lines (238 loc) · 9.72 KB
/
adanip_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# this is from a PR in the dadaptation repo
import math
from typing import TYPE_CHECKING, Any, Callable, Optional
import torch
import torch.optim
import pdb
import logging
import os
if TYPE_CHECKING:
from torch.optim.optimizer import _params_t
else:
_params_t = Any
def to_real(x):
if torch.is_complex(x):
return x.real
else:
return x
class DAdaptAdanIP(torch.optim.Optimizer):
r"""
Implements Adan with D-Adaptation automatic step-sizes. Leave LR set to 1 unless you encounter instability.
Adan was proposed in
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022.
https://arxiv.org/abs/2208.06677
This IP variant uses a tighter bound than the non-IP version,
and so will typically choose larger step sizes. It has not
been as extensively tested.
Arguments:
params (iterable):
Iterable of parameters to optimize or dicts defining parameter groups.
lr (float):
Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate.
betas (Tuple[float, float, flot], optional): coefficients used for computing
running averages of gradient and its norm. (default: (0.98, 0.92, 0.99))
eps (float):
Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-8).
weight_decay (float):
Weight decay, i.e. a L2 penalty (default: 0.02).
no_prox (boolean):
how to perform the decoupled weight decay (default: False)
log_every (int):
Log using print every k steps, default 0 (no logging).
d0 (float):
Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing.
growth_rate (float):
prevent the D estimate from growing faster than this multiplicative rate.
Default is inf, for unrestricted. Values like 1.02 give a kind of learning
rate warmup effect.
"""
def __init__(
self,
params,
lr=1.0,
betas=(0.98, 0.92, 0.99),
eps=1e-8,
weight_decay=0.02,
no_prox=False,
log_every=0,
d0=1e-6,
growth_rate=float("inf"),
):
if not 0.0 < d0:
raise ValueError("Invalid d0 value: {}".format(d0))
if not 0.0 < lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 < eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= betas[2] < 1.0:
raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2]))
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
no_prox=no_prox,
d=d0,
k=0,
numerator_weighted=0.0,
log_every=log_every,
growth_rate=growth_rate,
)
self.d0 = d0
super().__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return False
@property
def supports_flat_params(self):
return True
# Experimental implementation of Adan's restart strategy
@torch.no_grad()
def restart_opt(self):
for group in self.param_groups:
group["numerator_weighted"] = 0.0
for p in group["params"]:
if p.requires_grad:
state = self.state[p]
# State initialization
state["step"] = 0
state["s"] = torch.zeros_like(
p.data, memory_format=torch.preserve_format
).detach()
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(
p.data, memory_format=torch.preserve_format
).detach()
# Exponential moving average of gradient difference
state["exp_avg_diff"] = torch.zeros_like(
to_real(p.data), memory_format=torch.preserve_format
).detach()
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
p.data, memory_format=torch.preserve_format
).detach()
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
g_sq = 0.0
sksq_weighted = 0.0
sk_l1 = 0.0
ngroups = len(self.param_groups)
group = self.param_groups[0]
numerator_weighted = group["numerator_weighted"]
d = group["d"]
lr = group["lr"]
dlr = d * lr
no_prox = group["no_prox"]
growth_rate = group["growth_rate"]
log_every = group["log_every"]
beta1, beta2, beta3 = group["betas"]
numerator_acum = 0.0
for group in self.param_groups:
decay = group["weight_decay"]
k = group["k"]
eps = group["eps"]
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
# State initialization
if "step" not in state:
state["step"] = 0
state["s"] = torch.zeros_like(
p.data, memory_format=torch.preserve_format
).detach()
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(
p.data, memory_format=torch.preserve_format
).detach()
# Exponential moving average of gradient difference
state["exp_avg_diff"] = torch.zeros_like(
p.data, memory_format=torch.preserve_format
).detach()
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
to_real(p.data), memory_format=torch.preserve_format
).detach()
if state["step"] == 0:
# Previous gradient values
state["pre_grad"] = grad.clone()
exp_avg, exp_avg_sq, exp_avg_diff = (
state["exp_avg"],
state["exp_avg_diff"],
state["exp_avg_sq"],
)
grad_diff = grad - state["pre_grad"]
update = grad + beta2 * grad_diff
update_update = to_real(update * update.conj())
s = state["s"]
denom = exp_avg_sq.sqrt().add_(eps)
numerator_acum += dlr * torch.dot(
grad.flatten(), s.div(denom).flatten()
)
exp_avg.mul_(beta1).add_(grad, alpha=dlr * (1.0 - beta1))
exp_avg_diff.mul_(beta2).add_(grad_diff, alpha=dlr * (1.0 - beta2))
exp_avg_sq.mul_(beta3).add_(update_update, alpha=1.0 - beta3)
s.mul_(beta3).add_(grad, alpha=dlr * (1.0 - beta3))
sk_l1 += s.abs().sum().item()
######
numerator_weighted = beta3 * numerator_weighted + (1 - beta3) * numerator_acum
d_hat = d
# if we have not done any progres, return
# if we have any gradients available, will have sk_l1 > 0 (unless \|g\|=0)
if sk_l1 == 0:
return loss
if lr > 0.0:
d_hat = 2 * (beta3 / (1 - beta3)) * numerator_weighted / sk_l1
d = max(d, min(d_hat, d * growth_rate))
if log_every > 0 and k % log_every == 0:
print(
f"ng: {ngroups} lr: {lr} dlr: {dlr} d_hat: {d_hat}, d: {d}. sk_l1={sk_l1:1.1e} numerator_weighted={numerator_weighted:1.1e}"
)
for group in self.param_groups:
group["numerator_weighted"] = numerator_weighted
group["d"] = d
decay = group["weight_decay"]
k = group["k"]
eps = group["eps"]
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
exp_avg, exp_avg_sq, exp_avg_diff = (
state["exp_avg"],
state["exp_avg_diff"],
state["exp_avg_sq"],
)
state["step"] += 1
denom = exp_avg_sq.sqrt().add_(eps)
denom = denom.type(p.type())
update = (exp_avg + beta2 * exp_avg_diff).div_(denom)
### Take step
if no_prox:
p.data.mul_(1 - dlr * decay)
p.add_(update, alpha=-1)
else:
p.add_(update, alpha=-1)
p.data.div_(1 + dlr * decay)
state["pre_grad"].copy_(grad)
group["k"] = k + 1
return loss