forked from intel/neural-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
205 lines (178 loc) · 7.68 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# coding=utf-8
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020 - 2021 INTEL CORPORATION. All rights reserved.
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
sys.path.insert(0, os.getcwd())
import time
import argparse
import mlperf_loadgen as lg
import subprocess
import torch
import numpy as np
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--backend",
choices=["pytorch", "onnxruntime", "tf", "ov"],
default="pytorch",
help="Backend")
parser.add_argument(
"--scenario",
choices=["SingleStream", "Offline", "Server", "MultiStream"],
default="Offline",
help="Scenario")
parser.add_argument("--accuracy",
action="store_true",
help="enable accuracy pass")
parser.add_argument("--mlperf_conf",
default="build/mlperf.conf",
help="mlperf rules config")
parser.add_argument("--user_conf",
default="user.conf",
help="user config for user LoadGen settings such as target QPS")
parser.add_argument(
"--model_dir",
default=
"build/result/nnUNet/3d_fullres/Task043_BraTS2019/nnUNetTrainerV2__nnUNetPlansv2.mlperf.1",
help="Path to the directory containing plans.pkl")
parser.add_argument("--model", help="Path to the ONNX, OpenVINO, or TF model")
parser.add_argument("--preprocessed_data_dir",
default="build/preprocessed_data",
help="path to preprocessed data")
parser.add_argument("--performance_count",
type=int,
default=16,
help="performance count")
parser.add_argument('--tune', dest='tune', action='store_true',
help='tune best int8 model on calibration dataset')
parser.add_argument('--benchmark', dest='benchmark', action='store_true',
help='run benchmark')
parser.add_argument('--int8', dest='int8', action='store_true',
help='run benchmark for int8')
args = parser.parse_args()
return args
scenario_map = {
"SingleStream": lg.TestScenario.SingleStream,
"Offline": lg.TestScenario.Offline,
"Server": lg.TestScenario.Server,
"MultiStream": lg.TestScenario.MultiStream
}
def eval_func(model):
args = get_args()
if args.backend == "pytorch":
from pytorch_SUT import get_pytorch_sut
sut = get_pytorch_sut(model, args.preprocessed_data_dir,
args.performance_count)
elif args.backend == "onnxruntime":
from onnxruntime_SUT import get_onnxruntime_sut
sut = get_onnxruntime_sut(args.model, args.preprocessed_data_dir,
args.performance_count)
elif args.backend == "tf":
from tf_SUT import get_tf_sut
sut = get_tf_sut(args.model, args.preprocessed_data_dir,
args.performance_count)
elif args.backend == "ov":
from ov_SUT import get_ov_sut
sut = get_ov_sut(args.model, args.preprocessed_data_dir,
args.performance_count)
else:
raise ValueError("Unknown backend: {:}".format(args.backend))
settings = lg.TestSettings()
settings.scenario = scenario_map[args.scenario]
settings.FromConfig(args.mlperf_conf, "3d-unet", args.scenario)
settings.FromConfig(args.user_conf, "3d-unet", args.scenario)
if args.accuracy:
settings.mode = lg.TestMode.AccuracyOnly
else:
settings.mode = lg.TestMode.PerformanceOnly
log_path = "build/logs"
if not os.path.exists(log_path):
os.makedirs(log_path)
log_output_settings = lg.LogOutputSettings()
log_output_settings.outdir = log_path
log_output_settings.copy_summary_to_stdout = True
log_settings = lg.LogSettings()
log_settings.log_output = log_output_settings
print("Running Loadgen test...")
if args.benchmark:
start = time.time()
lg.StartTestWithLogSettings(sut.sut, sut.qsl.qsl, settings, log_settings)
if args.benchmark:
end = time.time()
if args.accuracy:
print("Running accuracy script...")
process = subprocess.Popen(['python3', 'accuracy-brats.py'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = process.communicate()
print(out)
print("Done!", float(err))
if args.benchmark:
print('Batch size = 1')
print('Latency: %.3f ms' % ((end - start) * 1000 / sut.qsl.count))
print('Throughput: %.3f images/sec' % (sut.qsl.count / (end - start)))
print('Accuracy: {mean:.5f}'.format(mean=float(err)))
print("Destroying SUT...")
lg.DestroySUT(sut.sut)
print("Destroying QSL...")
lg.DestroyQSL(sut.qsl.qsl)
return float(err)
sys.path.insert(0, os.path.join(os.getcwd(), "nnUnet"))
from nnunet.training.model_restore import load_model_and_checkpoint_files
from neural_compressor.experimental import Quantization, common
import pickle
def main():
class CalibrationDL():
def __init__(self):
path = os.path.abspath(os.path.expanduser('./brats_cal_images_list.txt'))
with open(path, 'r') as f:
self.preprocess_files = [line.rstrip() for line in f]
self.loaded_files = {}
self.batch_size = 1
def __getitem__(self, sample_id):
file_name = self.preprocess_files[sample_id]
print("Loading file {:}".format(file_name))
with open(os.path.join('build/calib_preprocess/', "{:}.pkl".format(file_name)), "rb") as f:
self.loaded_files[sample_id] = pickle.load(f)[0]
# note that calibration phase does not care label, here we return 0 for label free case.
return self.loaded_files[sample_id], 0
def __len__(self):
self.count = len(self.preprocess_files)
return self.count
args = get_args()
assert args.backend == "pytorch"
model_path = os.path.join(args.model_dir, "plans.pkl")
assert os.path.isfile(model_path), "Cannot find the model file {:}!".format(model_path)
trainer, params = load_model_and_checkpoint_files(args.model_dir, folds=1, fp16=False, checkpoint_name='model_final_checkpoint')
trainer.load_checkpoint_ram(params[0], False)
model = trainer.network
if args.tune:
quantizer = Quantization('conf.yaml')
quantizer.model = common.Model(model)
quantizer.eval_func = eval_func
quantizer.calib_dataloader = common.DataLoader(CalibrationDL())
q_model = quantizer.fit()
q_model.save('./nc_workspace')
exit(0)
if args.benchmark:
model.eval()
if args.int8:
from neural_compressor.utils.pytorch import load
new_model = load(
os.path.abspath(os.path.expanduser('./nc_workspace')), model)
else:
new_model = model
eval_func(new_model)
if __name__ == "__main__":
main()