forked from eliahuhorwitz/DeepSIM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·105 lines (88 loc) · 3.67 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
from collections import OrderedDict
from torch.autograd import Variable
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
from util import html
import torch
from tqdm import tqdm
def run(notebook_override_args=None, display_rate=10):
opt = TestOptions().parse(save=False, notebook_override_args=notebook_override_args)
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
opt.resize_or_crop = "none"
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
if not opt.engine and not opt.onnx:
model = create_model(opt)
model.train()
if opt.data_type == 16:
model.half()
elif opt.data_type == 8:
model.type(torch.uint8)
if opt.verbose:
print(model)
else:
from run_engine import run_trt_engine, run_onnx
with tqdm(total=len(dataset), initial=0, colour='blue') as pbar:
for i, data in enumerate(dataset):
# if i >= opt.how_many:
# break
if opt.data_type == 16:
data['label'] = data['label'].half()
data['inst'] = data['inst'].half()
elif opt.data_type == 8:
data['label'] = data['label'].uint8()
data['inst'] = data['inst'].uint8()
if opt.export_onnx:
print ("Exporting to ONNX: ", opt.export_onnx)
assert opt.export_onnx.endswith("onnx"), "Export model file should end with .onnx"
torch.onnx.export(model, [data['label'], data['inst']],
opt.export_onnx, verbose=True)
exit(0)
minibatch = 1
if opt.engine:
generated = run_trt_engine(opt.engine, minibatch, [data['label'], data['inst']])
elif opt.onnx:
generated = run_onnx(opt.onnx, opt.data_type, minibatch, [data['label'], data['inst']])
else:
generated = model.inference(data['label'], data['inst'], data['image'])
if i % display_rate == 0:
print(data['label'].shape, data['inst'].shape, data['image'].shape, generated.shape)
visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('synthesized_image', util.tensor2im(generated.data[0]))])
img_path = data['path']
if i % display_rate == 0:
print(img_path)
print('process image... %s' % img_path)
# visualizer.save_images(webpage, visuals, img_path)
if opt.is_notebook:
from PIL import Image
from IPython.display import display
import torchvision.transforms as transforms
im_generated = Image.fromarray(util.tensor2im(generated.data[0]))
if i % display_rate == 0:
print('label')
display(Image.fromarray(util.tensor2im(data['label'][0])))
print('generated')
display(im_generated)
# save the generated files.
save_path = data['path'][0].replace("test_seg", "test_B")
os.makedirs("/".join(save_path.split('/')[:-1]), exist_ok=True)
im_generated.save(save_path)
pbar.update(1)
# webpage.save()
# if opt.vid_mode:
# util.frames_to_vid(webpage)
if __name__ == "__main__":
run()