forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathernie_encoder.py
182 lines (144 loc) · 6.39 KB
/
ernie_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""extract embeddings from ERNIE encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
import numpy as np
import multiprocessing
import paddle.fluid as fluid
import reader.task_reader as task_reader
from model.ernie import ErnieConfig, ErnieModel
from utils.args import ArgumentGroup, print_arguments
from utils.init import init_pretraining_params
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("ernie_config_path", str, None, "Path to the json file for ernie model config.")
model_g.add_arg("init_pretraining_params", str, None,
"Init pre-training params which preforms fine-tuning from. If the "
"arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("output_dir", str, "embeddings", "path to save embeddings extracted by ernie_encoder.")
data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_set", str, None, "Path to data for calculating ernie_embeddings.")
data_g.add_arg("vocab_path", str, None, "Vocabulary path.")
data_g.add_arg("max_seq_len", int, 512, "Number of words of the longest seqence.")
data_g.add_arg("batch_size", int, 32, "Total examples' number in batch for training.")
data_g.add_arg("do_lower_case", bool, True,
"Whether to lower case the input text. Should be True for uncased models and False for cased models.")
run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.")
# yapf: enable
def create_model(args, pyreader_name, ernie_config):
pyreader = fluid.layers.py_reader(
capacity=50,
shapes=[[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1],
[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1], [-1, 1]],
dtypes=['int64', 'int64', 'int64', 'float', 'int64'],
lod_levels=[0, 0, 0, 0, 0],
name=pyreader_name,
use_double_buffer=True)
(src_ids, sent_ids, pos_ids, input_mask,
seq_lens) = fluid.layers.read_file(pyreader)
ernie = ErnieModel(
src_ids=src_ids,
position_ids=pos_ids,
sentence_ids=sent_ids,
input_mask=input_mask,
config=ernie_config)
enc_out = ernie.get_sequence_output()
unpad_enc_out = fluid.layers.sequence_unpad(enc_out, length=seq_lens)
cls_feats = ernie.get_pooled_output()
# set persistable = True to avoid memory opimizing
enc_out.persistable = True
unpad_enc_out.persistable = True
cls_feats.persistable = True
graph_vars = {
"cls_embeddings": cls_feats,
"top_layer_embeddings": unpad_enc_out,
}
return pyreader, graph_vars
def main(args):
args = parser.parse_args()
ernie_config = ErnieConfig(args.ernie_config_path)
ernie_config.print_config()
if args.use_cuda:
place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
dev_count = fluid.core.get_cuda_device_count()
else:
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
exe = fluid.Executor(place)
reader = task_reader.ExtractEmbeddingReader(
vocab_path=args.vocab_path,
max_seq_len=args.max_seq_len,
do_lower_case=args.do_lower_case)
startup_prog = fluid.Program()
data_generator = reader.data_generator(
input_file=args.data_set,
batch_size=args.batch_size,
epoch=1,
shuffle=False)
total_examples = reader.get_num_examples(args.data_set)
print("Device count: %d" % dev_count)
print("Total num examples: %d" % total_examples)
infer_program = fluid.Program()
with fluid.program_guard(infer_program, startup_prog):
with fluid.unique_name.guard():
pyreader, graph_vars = create_model(
args, pyreader_name='reader', ernie_config=ernie_config)
fluid.memory_optimize(input_program=infer_program)
infer_program = infer_program.clone(for_test=True)
exe.run(startup_prog)
if args.init_pretraining_params:
init_pretraining_params(
exe, args.init_pretraining_params, main_program=startup_prog)
else:
raise ValueError(
"WARNING: args 'init_pretraining_params' must be specified")
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = dev_count
pyreader.decorate_tensor_provider(data_generator)
pyreader.start()
total_cls_emb = []
total_top_layer_emb = []
total_labels = []
while True:
try:
cls_emb, unpad_top_layer_emb = exe.run(
program=infer_program,
fetch_list=[
graph_vars["cls_embeddings"].name, graph_vars[
"top_layer_embeddings"].name
],
return_numpy=False)
# batch_size * embedding_size
total_cls_emb.append(np.array(cls_emb))
total_top_layer_emb.append(np.array(unpad_top_layer_emb))
except fluid.core.EOFException:
break
total_cls_emb = np.concatenate(total_cls_emb)
total_top_layer_emb = np.concatenate(total_top_layer_emb)
with open(os.path.join(args.output_dir, "cls_emb.npy"),
"w") as cls_emb_file:
np.save(cls_emb_file, total_cls_emb)
with open(os.path.join(args.output_dir, "top_layer_emb.npy"),
"w") as top_layer_emb_file:
np.save(top_layer_emb_file, total_top_layer_emb)
if __name__ == '__main__':
args = parser.parse_args()
print_arguments(args)
main(args)