diff --git a/05Framework/02AutoDiff/03GradMode.md b/05Framework/02AutoDiff/03GradMode.md index bd80e9bb..a19b8226 100644 --- a/05Framework/02AutoDiff/03GradMode.md +++ b/05Framework/02AutoDiff/03GradMode.md @@ -85,7 +85,7 @@ $$ 转化成如上 DAG(有向无环图)结构之后,我们可以很容易分步计算函数的值,并求取它每一步的导数值,然后,我们把 $df/dx_1$ 求导过程利用链式法则表示成如下的形式: $$ -\dfrac{df}{dx_1}= \dfrac{dv_{-1}}{dx_1} \cdot (\dfrac{dv_{1}}{dv_{-1}} \cdot \dfrac{dv_{4}}{dv_{1}} + \dfrac{dv_{2}}{dv_{-1}} \cdot \dfrac{dv_{4}}{dx_{2}}) \cdot \dfrac{dv_{5}}{dv_{4}} \cdot \dfrac{df}{dv_{5}} +\dfrac{df}{dx_1}= \dfrac{dv_{-1}}{dx_1} \cdot (\dfrac{dv_{1}}{dv_{-1}} \cdot \dfrac{dv_{4}}{dv_{1}} + \dfrac{dv_{2}}{dv_{-1}} \cdot \dfrac{dv_{4}}{dv_{2}}) \cdot \dfrac{dv_{5}}{dv_{4}} \cdot \dfrac{df}{dv_{5}} $$ > 整个求导可以被拆成一系列微分算子的组合。