forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
120 lines (106 loc) · 4.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import argparse
import logging
import paddle.fluid as fluid
import paddle
import utils
import numpy as np
from nets import SequenceSemanticRetrieval
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
def parse_args():
parser = argparse.ArgumentParser("sequence semantic retrieval")
parser.add_argument(
"--train_dir", type=str, default='train_data', help="Training file")
parser.add_argument(
"--base_lr", type=float, default=0.01, help="learning rate")
parser.add_argument(
'--vocab_path', type=str, default='vocab.txt', help='vocab file')
parser.add_argument(
"--epochs", type=int, default=10, help="Number of epochs")
parser.add_argument(
'--parallel', type=int, default=0, help='whether parallel')
parser.add_argument(
'--use_cuda', type=int, default=0, help='whether use gpu')
parser.add_argument(
'--print_batch', type=int, default=10, help='num of print batch')
parser.add_argument(
'--model_dir', type=str, default='model_output', help='model dir')
parser.add_argument(
"--hidden_size", type=int, default=128, help="hidden size")
parser.add_argument(
"--batch_size", type=int, default=50, help="number of batch")
parser.add_argument(
"--embedding_dim", type=int, default=128, help="embedding dim")
parser.add_argument(
'--num_devices', type=int, default=1, help='Number of GPU devices')
return parser.parse_args()
def get_cards(args):
return args.num_devices
def train(args):
use_cuda = True if args.use_cuda else False
parallel = True if args.parallel else False
print("use_cuda:", use_cuda, "parallel:", parallel)
train_reader, vocab_size = utils.construct_train_data(
args.train_dir, args.vocab_path, args.batch_size * get_cards(args))
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
ssr = SequenceSemanticRetrieval(vocab_size, args.embedding_dim,
args.hidden_size)
# Train program
train_input_data, cos_pos, avg_cost, acc = ssr.train()
# Optimization to minimize lost
optimizer = fluid.optimizer.Adagrad(learning_rate=args.base_lr)
optimizer.minimize(avg_cost)
data_list = [var.name for var in train_input_data]
feeder = fluid.DataFeeder(feed_list=data_list, place=place)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if parallel:
train_exe = fluid.ParallelExecutor(
use_cuda=use_cuda, loss_name=avg_cost.name)
else:
train_exe = exe
total_time = 0.0
for pass_id in range(args.epochs):
epoch_idx = pass_id + 1
print("epoch_%d start" % epoch_idx)
t0 = time.time()
i = 0
for batch_id, data in enumerate(train_reader()):
i += 1
loss_val, correct_val = train_exe.run(
feed=feeder.feed(data), fetch_list=[avg_cost.name, acc.name])
if i % args.print_batch == 0:
logger.info(
"Train --> pass: {} batch_id: {} avg_cost: {}, acc: {}".
format(pass_id, batch_id,
np.mean(loss_val),
float(np.mean(correct_val)) / args.batch_size))
t1 = time.time()
total_time += t1 - t0
print("epoch:%d num_steps:%d time_cost(s):%f" %
(epoch_idx, i, total_time / epoch_idx))
save_dir = "%s/epoch_%d" % (args.model_dir, epoch_idx)
fluid.io.save_params(executor=exe, dirname=save_dir)
print("model saved in %s" % save_dir)
def main():
args = parse_args()
train(args)
if __name__ == "__main__":
main()