-
Notifications
You must be signed in to change notification settings - Fork 580
/
lipreal.py
279 lines (238 loc) · 10.9 KB
/
lipreal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import math
import torch
import numpy as np
#from .utils import *
import subprocess
import os
import time
import cv2
import glob
import pickle
import copy
import queue
from queue import Queue
from threading import Thread, Event
from io import BytesIO
import multiprocessing as mp
from ttsreal import EdgeTTS,VoitsTTS,XTTS
from lipasr import LipASR
import asyncio
from av import AudioFrame, VideoFrame
from wav2lip.models import Wav2Lip
from basereal import BaseReal
#from imgcache import ImgCache
from tqdm import tqdm
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
def read_imgs(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def __mirror_index(size, index):
#size = len(self.coord_list_cycle)
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
def inference(render_event,batch_size,face_imgs_path,audio_feat_queue,audio_out_queue,res_frame_queue):
model = load_model("./models/wav2lip.pth")
input_face_list = glob.glob(os.path.join(face_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
face_list_cycle = read_imgs(input_face_list)
#input_latent_list_cycle = torch.load(latents_out_path)
length = len(face_list_cycle)
index = 0
count=0
counttime=0
print('start inference')
while True:
if render_event.is_set():
starttime=time.perf_counter()
mel_batch = []
try:
mel_batch = audio_feat_queue.get(block=True, timeout=1)
except queue.Empty:
continue
is_all_silence=True
audio_frames = []
for _ in range(batch_size*2):
frame,type = audio_out_queue.get()
audio_frames.append((frame,type))
if type==0:
is_all_silence=False
if is_all_silence:
for i in range(batch_size):
res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
index = index + 1
else:
# print('infer=======')
t=time.perf_counter()
img_batch = []
for i in range(batch_size):
idx = __mirror_index(length,index+i)
face = face_list_cycle[idx]
img_batch.append(face)
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, face.shape[0]//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
counttime += (time.perf_counter() - t)
count += batch_size
#_totalframe += 1
if count>=100:
print(f"------actual avg infer fps:{count/counttime:.4f}")
count=0
counttime=0
for i,res_frame in enumerate(pred):
#self.__pushmedia(res_frame,loop,audio_track,video_track)
res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
index = index + 1
#print('total batch time:',time.perf_counter()-starttime)
else:
time.sleep(1)
print('musereal inference processor stop')
@torch.no_grad()
class LipReal(BaseReal):
def __init__(self, opt):
super().__init__(opt)
#self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.W = opt.W
self.H = opt.H
self.fps = opt.fps # 20 ms per frame
#### musetalk
self.avatar_id = opt.avatar_id
self.avatar_path = f"./data/avatars/{self.avatar_id}"
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
self.face_imgs_path = f"{self.avatar_path}/face_imgs"
self.coords_path = f"{self.avatar_path}/coords.pkl"
self.batch_size = opt.batch_size
self.idx = 0
self.res_frame_queue = mp.Queue(self.batch_size*2)
#self.__loadmodels()
self.__loadavatar()
self.asr = LipASR(opt,self)
self.asr.warm_up()
#self.__warm_up()
self.render_event = mp.Event()
mp.Process(target=inference, args=(self.render_event,self.batch_size,self.face_imgs_path,
self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue,
)).start()
# def __loadmodels(self):
# # load model weights
# self.audio_processor, self.vae, self.unet, self.pe = load_all_model()
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# self.timesteps = torch.tensor([0], device=device)
# self.pe = self.pe.half()
# self.vae.vae = self.vae.vae.half()
# self.unet.model = self.unet.model.half()
def __loadavatar(self):
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.frame_list_cycle = read_imgs(input_img_list)
#self.imagecache = ImgCache(len(self.coord_list_cycle),self.full_imgs_path,1000)
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
while not quit_event.is_set():
try:
res_frame,idx,audio_frames = self.res_frame_queue.get(block=True, timeout=1)
except queue.Empty:
continue
if audio_frames[0][1]!=0 and audio_frames[1][1]!=0: #全为静音数据,只需要取fullimg
self.speaking = False
audiotype = audio_frames[0][1]
if self.custom_index.get(audiotype) is not None: #有自定义视频
mirindex = self.mirror_index(len(self.custom_img_cycle[audiotype]),self.custom_index[audiotype])
combine_frame = self.custom_img_cycle[audiotype][mirindex]
self.custom_index[audiotype] += 1
# if not self.custom_opt[audiotype].loop and self.custom_index[audiotype]>=len(self.custom_img_cycle[audiotype]):
# self.curr_state = 1 #当前视频不循环播放,切换到静音状态
else:
combine_frame = self.frame_list_cycle[idx]
#combine_frame = self.imagecache.get_img(idx)
else:
self.speaking = True
bbox = self.coord_list_cycle[idx]
combine_frame = copy.deepcopy(self.frame_list_cycle[idx])
#combine_frame = copy.deepcopy(self.imagecache.get_img(idx))
y1, y2, x1, x2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
except:
continue
#combine_frame = get_image(ori_frame,res_frame,bbox)
#t=time.perf_counter()
combine_frame[y1:y2, x1:x2] = res_frame
#print('blending time:',time.perf_counter()-t)
image = combine_frame #(outputs['image'] * 255).astype(np.uint8)
new_frame = VideoFrame.from_ndarray(image, format="bgr24")
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
self.record_video_data(image)
for audio_frame in audio_frames:
frame,type = audio_frame
frame = (frame * 32767).astype(np.int16)
new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0])
new_frame.planes[0].update(frame.tobytes())
new_frame.sample_rate=16000
# if audio_track._queue.qsize()>10:
# time.sleep(0.1)
asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop)
self.record_audio_data(frame)
print('musereal process_frames thread stop')
def render(self,quit_event,loop=None,audio_track=None,video_track=None):
#if self.opt.asr:
# self.asr.warm_up()
self.tts.render(quit_event)
self.init_customindex()
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
process_thread.start()
self.render_event.set() #start infer process render
count=0
totaltime=0
_starttime=time.perf_counter()
#_totalframe=0
while not quit_event.is_set():
# update texture every frame
# audio stream thread...
t = time.perf_counter()
self.asr.run_step()
# if video_track._queue.qsize()>=2*self.opt.batch_size:
# print('sleep qsize=',video_track._queue.qsize())
# time.sleep(0.04*video_track._queue.qsize()*0.8)
if video_track._queue.qsize()>=5:
print('sleep qsize=',video_track._queue.qsize())
time.sleep(0.04*video_track._queue.qsize()*0.8)
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
# if delay > 0:
# time.sleep(delay)
self.render_event.clear() #end infer process render
print('musereal thread stop')