Skip to content

channel pruning for accelerating very deep neural networks

Notifications You must be signed in to change notification settings

lippman1125/channel_pruning_lasso

Repository files navigation

Channel pruning for accelerating very deep neural networks

This repo contains the PyTorch implementation for paper channel pruning for accelerating very deep neural networks.

Prune

We just support vgg-series network pruning, you can type command as follow to execute pruning.

python3 main.py --model vgg16_bn \
                --batch_size 100 \
                --calib_batch 50 \
                --calib_dir /data/imagenet1k_calib \
                --valid_dir /data/ILSVRC2012/val \
                --pruner lasso \
                --ckpt ./vgg16_bn-6c64b313.pth
type layer sparsity remain channal
conv1_2 5 0.5 32
conv2_1 9 0.5 64
conv2_2 12 0.5 64
conv3_1 16 0.5 130
conv3_2 19 0.5 128
conv3_3 22 0.5 205
conv4_1 26 0.2 409
conv4_2 29 0.2 415
conv4_3 32 0.2 512

After pruning:
  Top1 acc=59.728%
  Parameter: 135.452 M
  FLOPs: 7466.797M

Finetune

python3 train.py --data_root /data/ILSVRC2012 \
                 --model vgg16_bn_x \
                 --lr 1e-03 \
                 --lr_type cos \
                 --dataset imagenet \
                 --n_epoch 30 \
                 --batch_size 128 \
                 --ckpt_path vgg16_pruned.pth.tar \
                 --seed 1

Test

python3 test.py --model vgg16_bn_x \
                --checkpoint ./vgg16_pruned_finetune.pth.tar \
                --imagenet_path /data/ILSVRC2012/

After finetuning:
  Top1 acc=73.584%, Top5=91.490%

Orig:
  Top1 acc=73.476%, Top5=91.536%

About

channel pruning for accelerating very deep neural networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages