-
Notifications
You must be signed in to change notification settings - Fork 1
/
fisher2.cpp
2192 lines (2013 loc) · 57.3 KB
/
fisher2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* fisher2.c: this is fexact.c, part of the R
(http://cran.r-project.org) distribution
(package ctest).
I have just made a few changes to make it easier
to use it from the rest of my code (adjusted10.cpp and
adj-fast.cpp).
Ramón Díaz-Uriarte (rdiaz@cnio.es). May 2003.
*/
/* [Notice from the original fexact.c]
Fisher's exact test for contingency tables -- usage see below
fexact.f -- translated by f2c (version 19971204).
Run through a slightly modified version of MM's f2c-clean.
Heavily hand-edited by KH and MM.
*/
//#include <R.h>
#include "fisher2.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
//#include "ctest.h"
#include "Boolean.h"
#include "Constants.h"
#include "Memory.h"
#include <limits.h>
#define SINT_MAX INT_MAX
#undef min
#undef max
#define max(a, b) ((a) < (b) ? (b) : (a))
#define min(a, b) ((a) > (b) ? (b) : (a))
static void f2xact(int *nrow, int *ncol, double *table, int *ldtabl,
double *expect, double *percnt, double *emin, double
*prt, double *pre, double *fact, int *ico, int
*iro, int *kyy, int *idif, int *irn, int *key,
int *ldkey, int *ipoin, double *stp, int *ldstp,
int *ifrq, double *dlp, double *dsp, double *tm,
int *key2, int *iwk, double *rwk);
static void f3xact(int *nrow, int *irow, int *ncol, int *icol,
double *dlp, int *mm, double *fact, int *ico, int
*iro, int *it, int *lb, int *nr, int *nt, int
*nu, int *itc, int *ist, double *stv, double *alen,
const double *tol);
static void f4xact(int *nrow, int *irow, int *ncol, int *icol,
double *dsp, double *fact, int *icstk, int *ncstk,
int *lstk, int *mstk, int *nstk, int *nrstk, int
*irstk, double *ystk, const double *tol);
static void f5xact(double *pastp, const double *tol, int *kval, int *key,
int *ldkey, int *ipoin, double *stp, int *ldstp,
int *ifrq, int *npoin, int *nr, int *nl, int
*ifreq, int *itop, int *ipsh);
static void f6xact(int *nrow, int *irow, int *iflag, int *kyy,
int *key, int *ldkey, int *last, int *ipn);
static void f7xact(int *nrow, int *imax, int *idif, int *k, int *ks,
int *iflag);
static void f8xact(int *irow, int *is, int *i1, int *izero, int *new_val);
static double f9xact(int *n, int *mm, int *ir, double *fact);
static void f10act(int *nrow, int *irow, int *ncol, int *icol,
double *val, int *xmin, double *fact, int *nd,
int *ne, int *m);
static void f11act(int *irow, int *i1, int *i2, int *new_val);
static void prterr(int icode, char *mes);
static int iwork(int iwkmax, int *iwkpt, int number, int itype);
#ifdef USING_R
# define isort(n, ix) R_isort(ix, *n)
# include <Rmath.h> /* -> pgamma() */
#else
static void isort(int *n, int *ix);
static double gammds(double *y, double *p, int *ifault);
static double alogam(double *x, int *ifault);
#endif
/* The only public function : */
void
fexact(int *nrow, int *ncol, double *table, int *ldtabl,
double *expect, double *percnt, double *emin, double *prt,
double *pre, /* new in C : */ int *workspace)
{
/*
ALGORITHM 643, COLLECTED ALGORITHMS FROM ACM.
THIS WORK PUBLISHED IN TRANSACTIONS ON MATHEMATICAL SOFTWARE,
VOL. 19, NO. 4, DECEMBER, 1993, PP. 484-488.
-----------------------------------------------------------------------
Name: FEXACT
Purpose: Computes Fisher's exact test probabilities and a hybrid
approximation to Fisher exact test probabilities for a
contingency table using the network algorithm.
Usage: CALL FEXACT (NROW, NCOL, TABLE, LDTABL, EXPECT, PERCNT,
EMIN, PRT, PRE)
Arguments:
NROW - The number of rows in the table. (Input)
NCOL - The number of columns in the table. (Input)
TABLE - NROW by NCOL matrix containing the contingency
table. (Input)
LDTABL - Leading dimension of TABLE exactly as specified
in the dimension statement in the calling
program. (Input)
EXPECT - Expected value used in the hybrid algorithm for
deciding when to use asymptotic theory
probabilities. (Input)
If EXPECT <= 0.0 then asymptotic theory probabilities
are not used and Fisher exact test probabilities are
computed. Otherwise, if PERCNT or more of the cells in
the remaining table have estimated expected values of
EXPECT or more, with no remaining cell having expected
value less than EMIN, then asymptotic chi-squared
probabilities are used. See the algorithm section of the
manual document for details.
Use EXPECT = 5.0 to obtain the 'Cochran' condition.
PERCNT - Percentage of remaining cells that must have
estimated expected values greater than EXPECT
before asymptotic probabilities can be used. (Input)
See argument EXPECT for details.
Use PERCNT = 80.0 to obtain the 'Cochran' condition.
EMIN - Minimum cell estimated expected value allowed for
asymptotic chi-squared probabilities to be used. (Input)
See argument EXPECT for details.
Use EMIN = 1.0 to obtain the 'Cochran' condition.
PRT - Probability of the observed table for fixed
marginal totals. (Output)
PRE - Table p-value. (Output)
PRE is the probability of a more extreme table,
where `extreme' is in a probabilistic sense.
If EXPECT < 0 then the Fisher exact probability
is returned. Otherwise, an approximation to the
Fisher exact probability is computed based upon
asymptotic chi-squared probabilities for ``large''
table expected values. The user defines ``large''
through the arguments EXPECT, PERCNT, and EMIN.
Remarks:
1. For many problems one megabyte or more of workspace can be
required. If the environment supports it, the user should begin
by increasing the workspace used to 200,000 units.
2. In FEXACT, LDSTP = 30*LDKEY. The proportion of table space used
by STP may be changed by changing the line MULT = 30 below to
another value.
3. FEXACT may be converted to single precision by setting IREAL = 3,
and converting all DOUBLE PRECISION specifications (except the
specifications for RWRK, IWRK, and DWRK) to REAL. This will
require changing the names and specifications of the intrinsic
functions ALOG, AMAX1, AMIN1, EXP, and REAL. In addition, the
machine specific constants will need to be changed, and the name
DWRK will need to be changed to RWRK in the call to F2XACT.
4. Machine specific constants are specified and documented in F2XACT.
A missing value code is specified in both FEXACT and F2XACT.
5. Although not a restriction, is is not generally practical to call
this routine with large tables which are not sparse and in
which the 'hybrid' algorithm has little effect. For example,
although it is feasible to compute exact probabilities for the
table
1 8 5 4 4 2 2
5 3 3 4 3 1 0
10 1 4 0 0 0 0,
computing exact probabilities for a similar table which has been
enlarged by the addition of an extra row (or column) may not be
feasible.
-----------------------------------------------------------------------
*/
/* CONSTANT Parameters : */
/* To increase the length of the table of paste path lengths relative
to the length of the hash table, increase MULT.
*/
const int mult = 30;
/* AMISS is a missing value indicator which is returned when the
probability is not defined.
*/
const double amiss = -12345.;
/*
Set IREAL = 4 for DOUBLE PRECISION
Set IREAL = 3 for SINGLE PRECISION
*/
#define i_real 4
#define i_int 2
/* System generated locals */
int ikh;
/* Local variables */
int nco, nro, ntot, numb, iiwk, irwk;
int i, j, k, kk, ldkey, ldstp, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10;
int i3a, i3b, i3c, i9a, iwkmax, iwkpt;
/* Workspace Allocation (freed at end) */
double *equiv;
iwkmax = 2 * (int) (*workspace / 2);
// equiv = (double *) R_alloc(iwkmax / 2, sizeof(double));
equiv = (double *) calloc(iwkmax / 2, sizeof(double));
/* The check could never happen with Calloc!
equiv = Calloc(iwkmax / 2, double);
if (!equiv) {
prterr(0, "Can not allocate specified workspace");
} */
#define dwrk (equiv)
#define iwrk ((int *)equiv)
#define rwrk ((float *)equiv)
/* Parameter adjustments */
table -= *ldtabl + 1;
/* Function Body */
iwkpt = 0;
if (*nrow > *ldtabl)
prterr(1, "NROW must be less than or equal to LDTABL.");
ntot = 0;
for (i = 1; i <= *nrow; ++i) {
for (j = 1; j <= *ncol; ++j) {
if (table[i + j * *ldtabl] < 0.)
prterr(2, "All elements of TABLE must be positive.");
ntot = (int) (ntot + table[i + j * *ldtabl]);
}
}
if (ntot == 0) {
prterr(3, "All elements of TABLE are zero.\n"
"PRT and PRE are set to missing values.");
*prt = amiss;
*pre = amiss;
goto L_End;
}
nco = max(*nrow, *ncol);
nro = *nrow + *ncol - nco;/* = min(*nrow, *ncol) */
k = *nrow + *ncol + 1;
kk = k * nco;
ikh = ntot + 1;
i1 = iwork(iwkmax, &iwkpt, ikh, i_real);
i2 = iwork(iwkmax, &iwkpt, nco, i_int);
i3 = iwork(iwkmax, &iwkpt, nco, i_int);
i3a = iwork(iwkmax, &iwkpt, nco, i_int);
i3b = iwork(iwkmax, &iwkpt, nro, i_int);
i3c = iwork(iwkmax, &iwkpt, nro, i_int);
ikh = max(k * 5 + (kk << 1), nco * 7 + 800);
iiwk= iwork(iwkmax, &iwkpt, ikh, i_int);
ikh = max(nco + 401, k);
irwk= iwork(iwkmax, &iwkpt, ikh, i_real);
/* NOTE:
What follows below splits the remaining amount iwkmax - iwkpt of
(int) workspace into hash tables as follows.
type size index
INT 2 * ldkey i4 i5 i11
REAL 2 * ldkey i8 i9 i10
REAL 2 * ldstp i6
INT 6 * ldstp i7
Hence, we need ldkey times
3 * 2 + 3 * 2 * s + 2 * mult * s + 6 * mult
chunks of integer memory, where s = sizeof(REAL) / sizeof(INT).
If doubles are used and are twice as long as ints, this gives
18 + 10 * mult
so that the value of ldkey can be obtained by dividing available
(int) workspace by this number.
In fact, because iwork() can actually s * n + s - 1 int chunks
when allocating a REAL, we use ldkey = available / numb - 1.
FIXME:
Can we always assume that sizeof(double) / sizeof(int) is 2?
*/
if (i_real == 4) { /* Double precision reals */
numb = 18 + 10 * mult;
} else { /* Single precision reals */
numb = (mult << 3) + 12;
}
ldkey = (iwkmax - iwkpt) / numb - 1;
ldstp = mult * ldkey;
ikh = ldkey << 1; i4 = iwork(iwkmax, &iwkpt, ikh, i_int);
ikh = ldkey << 1; i5 = iwork(iwkmax, &iwkpt, ikh, i_int);
ikh = ldstp << 1; i6 = iwork(iwkmax, &iwkpt, ikh, i_real);
ikh = ldstp * 6; i7 = iwork(iwkmax, &iwkpt, ikh, i_int);
ikh = ldkey << 1; i8 = iwork(iwkmax, &iwkpt, ikh, i_real);
ikh = ldkey << 1; i9 = iwork(iwkmax, &iwkpt, ikh, i_real);
ikh = ldkey << 1; i9a = iwork(iwkmax, &iwkpt, ikh, i_real);
ikh = ldkey << 1; i10 = iwork(iwkmax, &iwkpt, ikh, i_int);
/* To convert to double precision, change RWRK to DWRK in the next CALL.
*/
f2xact(nrow,
ncol,
&table[*ldtabl + 1],
ldtabl,
expect,
percnt,
emin,
prt,
pre,
dwrk + i1,
iwrk + i2,
iwrk + i3,
iwrk + i3a,
iwrk + i3b,
iwrk + i3c,
iwrk + i4,
&ldkey,
iwrk + i5,
dwrk + i6,
&ldstp,
iwrk + i7,
dwrk + i8,
dwrk + i9,
dwrk + i9a,
iwrk + i10,
iwrk + iiwk,
dwrk + irwk);
L_End:
/* Free(equiv); */
free(equiv);
return;
}
#undef rwrk
#undef iwrk
#undef dwrk
/*
-----------------------------------------------------------------------
Name: F2XACT
Purpose: Computes Fisher's exact test for a contingency table,
routine with workspace variables specified.
Usage: F2XACT (NROW, NCOL, TABLE, LDTABL, EXPECT, PERCNT,
EMIN, PRT, PRE, FACT, ICO, IRO, KYY, IDIF,
IRN, KEY, LDKEY, IPOIN, STP, LDSTP, IFRQ,
DLP, DSP, TM, KEY2, IWK, RWK)
-----------------------------------------------------------------------
*/
void
f2xact(int *nrow, int *ncol, double *table, int *ldtabl,
double *expect, double *percnt, double *emin, double *prt,
double *pre, double *fact, int *ico, int *iro, int *kyy,
int *idif, int *irn, int *key, int *ldkey, int *ipoin,
double *stp, int *ldstp, int *ifrq, double *dlp, double *dsp,
double *tm, int *key2, int *iwk, double *rwk)
{
/* IMAX is the largest representable int on the machine. */
const int imax = SINT_MAX;
// const int imax = 2147483647; //xx: I DON´T like this, and
// thanks to the hint from Jason Turner I don't do it anymore. (R.D-U).
/* AMISS is a missing value indicator which is returned when the
probability is not defined. */
const double amiss = -12345.;
/* TOL is chosen as the square root of the smallest relative spacing. */
#ifndef Macintosh
const static double tol = 3.45254e-7;
#else
static double tol = 3.45254e-7;
#endif
/* EMX is a large positive value used in comparing expected values. */
const static double emx = 1e30;
/* Local variables {{any really need to be static ???}} */
static int kval, kmax, jkey, last, ipsh, itmp, itop, jstp, ntot,
jstp2, jstp3, jstp4, i, ii, j, k, n, iflag, ncell, ifreq, chisq,
ikkey, ikstp, ikstp2, k1, kb, kd, ks,
i31, i32, i33, i34, i35, i36, i37, i38, i39,
i41, i42, i43, i44, i45, i46, i47, i48, i310, i311,
nco, nrb, ipn, ipo, itp, nro, nro2;
static double dspt, dd, df,ddf, drn,dro, emn, obs, obs2, obs3,
pastp, pv, tmp;
double d1;
#ifndef USING_R
double d2;
static int ifault;
#endif
bool nr_gt_nc;
/* Parameter adjustments */
table -= *ldtabl + 1;
--ico;
--iro;
--kyy;
--idif;
--irn;
--key;
--ipoin;
--stp;
--ifrq;
--dlp;
--dsp;
--tm;
--key2;
--iwk;
--rwk;
/* Check table dimensions */
if (*nrow > *ldtabl)
prterr(1, "NROW must be less than or equal to LDTABL.");
if (*ncol <= 1)
prterr(4, "NCOL must be at least 2");
/* Initialize KEY array */
for (i = 1; i <= *ldkey << 1; ++i) {
key[i] = -9999;
key2[i] = -9999;
}
/* Initialize parameters */
*pre = 0.;
itop = 0;
if (*expect > 0.)
emn = *emin;
else
emn = emx;
nr_gt_nc = *nrow > *ncol;
/* nco := max(nrow, ncol) : */
if(nr_gt_nc)
nco = *nrow;
else
nco = *ncol;
/* Initialize pointers for workspace */
/* f3xact */
i31 = 1;
i32 = i31 + nco;
i33 = i32 + nco;
i34 = i33 + nco;
i35 = i34 + nco;
i36 = i35 + nco;
i37 = i36 + nco;
i38 = i37 + nco;
i39 = i38 + 400;
i310 = 1;
i311 = 401;
/* f4xact */
k = *nrow + *ncol + 1;
i41 = 1;
i42 = i41 + k;
i43 = i42 + k;
i44 = i43 + k;
i45 = i44 + k;
i46 = i45 + k;
i47 = i46 + k * nco;
i48 = 1;
/* Compute row marginals and total */
ntot = 0;
for (i = 1; i <= *nrow; ++i) {
iro[i] = 0;
for (j = 1; j <= *ncol; ++j) {
if (table[i + j * *ldtabl] < -1e-4)
prterr(2, "All elements of TABLE must be positive.");
iro[i] += (int) table[i + j * *ldtabl];
}
ntot += iro[i];
}
if (ntot == 0) {
prterr(3, "All elements of TABLE are zero.\n"
"PRT and PRE are set to missing values.");
*pre = *prt = amiss;
return;
}
/* Column marginals */
for (i = 1; i <= *ncol; ++i) {
ico[i] = 0;
for (j = 1; j <= *nrow; ++j)
ico[i] += (int) table[j + i * *ldtabl];
}
/* sort marginals */
isort(nrow, &iro[1]);
isort(ncol, &ico[1]);
/* Determine row and column marginals.
Define max(nrow,ncol) =: nco >= nro := min(nrow,ncol)
nco is defined above
Swap marginals if necessary to ico[1:nco] & iro[1:nro]
*/
if (nr_gt_nc) {
nro = *ncol;
/* Swap marginals */
for (i = 1; i <= nco; ++i) {
itmp = iro[i];
if (i <= nro)
iro[i] = ico[i];
ico[i] = itmp;
}
} else
nro = *nrow;
/* Get multiplers for stack */
kyy[1] = 1;
for (i = 2; i <= nro; ++i) {
/* Hash table multipliers */
if (iro[i - 1] + 1 <= imax / kyy[i - 1]) {
kyy[i] = kyy[i - 1] * (iro[i - 1] + 1);
j /= kyy[i - 1];
} else
goto L_ERR_5;
}
/* Maximum product */
if (iro[nro - 1] + 1 <= imax / kyy[nro - 1]) {
kmax = (iro[nro] + 1) * kyy[nro - 1];
} else {
L_ERR_5:
prterr(5, "The hash table key cannot be computed because "
"the largest key\n"
"is larger than the largest representable int.\n"
"The algorithm cannot proceed.\n"
"Reduce the workspace size, or use `exact = FALSE'.");
return;
}
/* Compute log factorials */
fact[0] = 0.;
fact[1] = 0.;
if(ntot >= 2) fact[2] = log(2.);
/* MM: old code assuming log() to be SLOW */
for (i = 3; i <= ntot; i += 2) {
fact[i] = fact[i - 1] + log((double) i);
j = i + 1;
if (j <= ntot)
fact[j] = fact[i] + fact[2] + fact[j / 2] - fact[j / 2 - 1];
}
/* Compute obs := observed path length */
obs = tol;
ntot = 0;
for (j = 1; j <= nco; ++j) {
dd = 0.;
for (i = 1; i <= nro; ++i) {
if (nr_gt_nc) {
dd += fact[(int) table[j + i * *ldtabl]];
ntot += (int) table[j + i * *ldtabl];
} else {
dd += fact[(int) table[i + j * *ldtabl]];
ntot += (int) table[i + j * *ldtabl];
}
}
obs += fact[ico[j]] - dd;
}
/* Denominator of observed table: DRO */
dro = f9xact(&nro, &ntot, &iro[1], fact);
*prt = exp(obs - dro);
/* Initialize pointers */
k = nco;
last = *ldkey + 1;
jkey = *ldkey + 1;
jstp = *ldstp + 1;
jstp2 = *ldstp * 3 + 1;
jstp3 = (*ldstp << 2) + 1;
jstp4 = *ldstp * 5 + 1;
ikkey = 0;
ikstp = 0;
ikstp2 = *ldstp << 1;
ipo = 1;
ipoin[1] = 1;
stp[1] = 0.;
ifrq[1] = 1;
ifrq[ikstp2 + 1] = -1;
Outer_Loop:
kb = nco - k + 1;
ks = 0;
n = ico[kb];
kd = nro + 1;
kmax = nro;
/* IDIF is the difference in going to the daughter */
for (i = 1; i <= nro; ++i)
idif[i] = 0;
/* Generate the first daughter */
do {
--kd;
ntot = min(n, iro[kd]);
idif[kd] = ntot;
if (idif[kmax] == 0)
--kmax;
n -= ntot;
}
while (n > 0 && kd != 1);
if (n != 0) {
goto L310;
}
k1 = k - 1;
n = ico[kb];
ntot = 0;
for (i = kb + 1; i <= nco; ++i)
ntot += ico[i];
L150:
/* Arc to daughter length=ICO(KB) */
for (i = 1; i <= nro; ++i)
irn[i] = iro[i] - idif[i];
/* Sort irn */
if (k1 > 1) {
if (nro == 2) {
if (irn[1] > irn[2]) {
ii = irn[1];
irn[1] = irn[2];
irn[2] = ii;
}
} else if (nro == 3) {
ii = irn[1];
if (ii > irn[3]) {
if (ii > irn[2]) {
if (irn[2] > irn[3]) {
irn[1] = irn[3];
irn[3] = ii;
} else {
irn[1] = irn[2];
irn[2] = irn[3];
irn[3] = ii;
}
} else {
irn[1] = irn[3];
irn[3] = irn[2];
irn[2] = ii;
}
} else if (ii > irn[2]) {
irn[1] = irn[2];
irn[2] = ii;
} else if (irn[2] > irn[3]) {
ii = irn[2];
irn[2] = irn[3];
irn[3] = ii;
}
} else {
for (j = 2; j <= nro; ++j) {
i = j - 1;
ii = irn[j];
while (ii < irn[i]) {
irn[i + 1] = irn[i];
--i;
if (i == 0)
break;
}
irn[i + 1] = ii;
}
}
/* Adjust start for zero */
for (i = 1; i <= nro; ++i) {
if (irn[i] != 0)
break;
}
nrb = i;
nro2 = nro - i + 1;
} else {
nrb = 1;
nro2 = nro;
}
/* Some table values */
ddf = f9xact(&nro, &n, &idif[1], fact);
drn = f9xact(&nro2, &ntot, &irn[nrb], fact) - dro + ddf;
/* Get hash value */
if (k1 > 1) {
kval = irn[1] + irn[2] * kyy[2];
for (i = 3; i <= nro; ++i) {
kval += irn[i] * kyy[i];
}
/* Get hash table entry */
i = kval % (*ldkey << 1) + 1;
/* Search for unused location */
for (itp = i; itp <= *ldkey << 1; ++itp) {
ii = key2[itp];
if (ii == kval) {
goto L240;
} else if (ii < 0) {
key2[itp] = kval;
dlp[itp] = 1.;
dsp[itp] = 1.;
goto L240;
}
}
for (itp = 1; itp <= i - 1; ++itp) {
ii = key2[itp];
if (ii == kval) {
goto L240;
} else if (ii < 0) {
key2[itp] = kval;
dlp[itp] = 1.;
goto L240;
}
}
/* KH
prterr(6, "LDKEY is too small.\n"
"It is not possible to give the value of LDKEY required,\n"
"but you could try doubling LDKEY (and possibly LDSTP).");
*/
prterr(6, "LDKEY is too small for this problem.\n"
"Try increasing the size of the workspace.");
}
L240:
ipsh = (1);
/* Recover pastp */
ipn = ipoin[ipo + ikkey];
pastp = stp[ipn + ikstp];
ifreq = ifrq[ipn + ikstp];
/* Compute shortest and longest path */
if (k1 > 1) {
obs2 = obs - fact[ico[kb + 1]] - fact[ico[kb + 2]] - ddf;
for (i = 3; i <= k1; ++i) {
obs2 -= fact[ico[kb + i]];
}
if (dlp[itp] > 0.) {
dspt = obs - obs2 - ddf;
/* Compute longest path */
dlp[itp] = 0.;
f3xact(&nro2, &irn[nrb], &k1, &ico[kb + 1], &dlp[itp],
&ntot, fact, &iwk[i31], &iwk[i32], &iwk[i33],
&iwk[i34], &iwk[i35], &iwk[i36], &iwk[i37],
&iwk[i38], &iwk[i39], &rwk[i310], &rwk[i311], &tol);
dlp[itp] = min(0., dlp[itp]);
/* Compute shortest path */
dsp[itp] = dspt;
f4xact(&nro2, &irn[nrb], &k1, &ico[kb + 1], &dsp[itp], fact,
&iwk[i47], &iwk[i41], &iwk[i42], &iwk[i43],
&iwk[i44], &iwk[i45], &iwk[i46], &rwk[i48], &tol);
dsp[itp] = min(0., dsp[itp] - dspt);
/* Use chi-squared approximation? */
if ((irn[nrb] * ico[kb + 1]) > ntot * emn) {
ncell = 0;
for (i = 0; i < nro2; ++i)
for (j = 1; j <= k1; ++j)
if (irn[nrb + i] * ico[kb + j] >= ntot * *expect)
ncell++;
if (ncell * 100 >= k1 * nro2 * *percnt) {
tmp = 0.;
for (i = 0; i < nro2; ++i)
tmp += (fact[irn[nrb + i]] -
fact[irn[nrb + i] - 1]);
tmp *= k1 - 1;
for (j = 1; j <= k1; ++j)
tmp += (nro2 - 1) * (fact[ico[kb + j]] -
fact[ico[kb + j] - 1]);
df = (double) ((nro2 - 1) * (k1 - 1));
tmp += df * 1.83787706640934548356065947281;
tmp -= (nro2 * k1 - 1) * (fact[ntot] - fact[ntot - 1]);
tm[itp] = (obs - dro) * -2. - tmp;
} else {
/* tm(itp) set to a flag value */
tm[itp] = -9876.;
}
} else {
tm[itp] = -9876.;
}
}
obs3 = obs2 - dlp[itp];
obs2 -= dsp[itp];
if (tm[itp] == -9876.) {
chisq = (0);
} else {
chisq = (1);
tmp = tm[itp];
}
} else {
obs2 = obs - drn - dro;
obs3 = obs2;
}
L300:
/* Process node with new PASTP */
if (pastp <= obs3) {
/* Update pre */
*pre += (double) ifreq * exp(pastp + drn);
} else if (pastp < obs2) {
if (chisq) {
df = (double) ((nro2 - 1) * (k1 - 1));
#ifdef USING_R
pv = pgamma(fmax2(0., tmp + (pastp + drn) * 2.) / 2.,
df / 2., /*scale = */ 1.,
/*lower_tail = */FALSE, /*log_p = */ FALSE);
#else
d1 = max(0., tmp + (pastp + drn) * 2.) / 2.;
d2 = df / 2.;
pv = 1. - gammds(&d1, &d2, &ifault);
#endif
*pre += (double) ifreq * exp(pastp + drn) * pv;
} else {
/* Put daughter on queue */
d1 = pastp + ddf;
f5xact(&d1, &tol, &kval, &key[jkey], ldkey, &ipoin[jkey],
&stp[jstp], ldstp, &ifrq[jstp], &ifrq[jstp2],
&ifrq[jstp3], &ifrq[jstp4], &ifreq, &itop, &ipsh);
ipsh = (0);
}
}
/* Get next PASTP on chain */
ipn = ifrq[ipn + ikstp2];
if (ipn > 0) {
pastp = stp[ipn + ikstp];
ifreq = ifrq[ipn + ikstp];
goto L300;
}
/* Generate a new daughter node */
f7xact(&kmax, &iro[1], &idif[1], &kd, &ks, &iflag);
if (iflag != 1) {
goto L150;
}
L310:
/* Go get a new mother from stage K */
do {
iflag = 1;
f6xact(&nro, &iro[1], &iflag, &kyy[1], &key[ikkey + 1], ldkey,
&last, &ipo);
/* Update pointers */
if (iflag != 3)
goto Outer_Loop;
/* else iflag == 3 : no additional nodes to process */
--k;
itop = 0;
ikkey = jkey - 1;
ikstp = jstp - 1;
ikstp2 = jstp2 - 1;
jkey = *ldkey - jkey + 2;
jstp = *ldstp - jstp + 2;
jstp2 = (*ldstp << 1) + jstp;
for (i = 1; i <= *ldkey << 1; ++i)
key2[i] = -9999;
} while (k >= 2);
}
/*
-----------------------------------------------------------------------
Name: F3XACT
Purpose: Computes the shortest path length for a given table.
Usage: F3XACT (NROW, IROW, NCOL, ICOL, DLP, MM, FACT, ICO, IRO,
IT, LB, NR, NT, NU, ITC, IST, STV, ALEN, TOL)
Arguments:
NROW - The number of rows in the table. (Input)
IROW - Vector of length NROW containing the row sums
for the table. (Input)
NCOL - The number of columns in the table. (Input)
ICOL - Vector of length K containing the column sums
for the table. (Input)
DLP - The longest path for the table. (Output)
MM - The total count in the table. (Output)
FACT - Vector containing the logarithms of factorials. (Input)
ICO - Work vector of length MAX(NROW,NCOL).
IRO - Work vector of length MAX(NROW,NCOL).
IT - Work vector of length MAX(NROW,NCOL).
LB - Work vector of length MAX(NROW,NCOL).
NR - Work vector of length MAX(NROW,NCOL).
NT - Work vector of length MAX(NROW,NCOL).
NU - Work vector of length MAX(NROW,NCOL).
ITC - Work vector of length 400.
IST - Work vector of length 400.
STV - Work vector of length 400.
ALEN - Work vector of length MAX(NROW,NCOL).
TOL - Tolerance. (Input)
-----------------------------------------------------------------------
*/
void
f3xact(int *nrow, int *irow, int *ncol, int *icol, double *dlp,
int *mm, double *fact, int *ico, int *iro, int *it,
int *lb, int *nr, int *nt, int *nu, int *itc, int *ist,
double *stv, double *alen, const double *tol)
{
/* Initialized data */
static int ldst = 200;
static int nst = 0;
static int nitc = 0;
/* Local variables */
static int xmin;
static int i, k;
static double v;
static int n11, n12, ii, nn, ks, ic1, ic2, nc1, nn1;
static int nr1, nco;
static double val;
static int nct, ipn, irl, key, lev, itp, nro;
static double vmn;
static int nrt, kyy, nc1s;
/* Parameter adjustments */
--stv;
--ist;
--itc;
--nu;
--nt;
--nr;
--lb;
--it;
--iro;
--ico;
--icol;
--irow;
/* Function Body */
for (i = 0; i <= *ncol; ++i) {
alen[i] = 0.;
}
for (i = 1; i <= 400; ++i) {
ist[i] = -1;
}
/* nrow is 1 */
if (*nrow <= 1) {
if (*nrow > 0) {
*dlp -= fact[icol[1]];
for (i = 2; i <= *ncol; ++i) {
*dlp -= fact[icol[i]];
}
}
return;
}
/* ncol is 1 */
if (*ncol <= 1) {
if (*ncol > 0) {
*dlp = *dlp - fact[irow[1]] - fact[irow[2]];
for (i = 3; i <= *nrow; ++i) {
*dlp -= fact[irow[i]];
}
}
return;
}
/* 2 by 2 table */
if (*nrow * *ncol == 4) {
n11 = (irow[1] + 1) * (icol[1] + 1) / (*mm + 2);
n12 = irow[1] - n11;
*dlp = *dlp - fact[n11] - fact[n12] - fact[icol[1] - n11]
- fact[icol[2] - n12];
return;
}
/* Test for optimal table */
val = 0.;
xmin = (0);
if (irow[*nrow] <= irow[1] + *ncol) {
f10act(nrow, &irow[1], ncol, &icol[1], &val, &xmin, fact,
&lb[1], &nu[1], &nr[1]);
}
if (! xmin) {
if (icol[*ncol] <= icol[1] + *nrow) {
f10act(ncol, &icol[1], nrow, &irow[1], &val, &xmin, fact,
&lb[1], &nu[1], &nr[1]);
}
}
if (xmin) {
*dlp -= val;
return;
}
/* Setup for dynamic programming */
nn = *mm;
/* Minimize ncol */
if (*nrow >= *ncol) {
nro = *nrow;
nco = *ncol;
for (i = 1; i <= *nrow; ++i) {
iro[i] = irow[i];
}
ico[1] = icol[1];
nt[1] = nn - ico[1];
for (i = 2; i <= *ncol; ++i) {
ico[i] = icol[i];
nt[i] = nt[i - 1] - ico[i];
}
} else {
nro = *ncol;
nco = *nrow;
ico[1] = irow[1];
nt[1] = nn - ico[1];
for (i = 2; i <= *nrow; ++i) {
ico[i] = irow[i];
nt[i] = nt[i - 1] - ico[i];
}
for (i = 1; i <= *ncol; ++i)
iro[i] = icol[i];
}
/* Initialize pointers */
vmn = 1e10;
nc1s = nco - 1;
irl = 1;
ks = 0;
k = ldst;
kyy = ico[nco] + 1;