-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcba_cb_m2.py
308 lines (261 loc) · 11.1 KB
/
cba_cb_m2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
Description: The following code implements an improved version of the algorithm, called CBA-CB: M2. It contains three
stages. For stage 1, we scan the whole database, to find the cRule and wRule, get the set Q, U and A at the same
time. In stage 2, for each case d that we could not decide which rule should cover it in stage 1, we go through d
again to find all rules that classify it wrongly and have a higher precedence than the corresponding cRule of d.
Finally, in stage 3, we choose the final set of rules to form our final classifer.
Input: a set of CARs generated from rule_generator (see cab_rg.py) and a dataset got from pre_process
(see pre_processing.py)
Output: a classifier
Author: CBA Studio
"""
import ruleitem
import cba_cb_m1
from functools import cmp_to_key
class Classifier_m2:
"""
The definition of classifier formed in CBA-CB: M2. It contains a list of rules order by their precedence, a default
class label. The other member are private and useless for outer code.
"""
def __init__(self):
self.rule_list = list()
self.default_class = None
self._default_class_list = list()
self._total_errors_list = list()
# insert a new rule into classifier
def add(self, rule, default_class, total_errors):
self.rule_list.append(rule)
self._default_class_list.append(default_class)
self._total_errors_list.append(total_errors)
# discard those rules that introduce more errors. See line 18-20, CBA-CB: M2 (Stage 3).
def discard(self):
index = self._total_errors_list.index(min(self._total_errors_list))
self.rule_list = self.rule_list[:(index + 1)]
self._total_errors_list = None
self.default_class = self._default_class_list[index]
self._default_class_list = None
# just print out rules and default class label
def print(self):
for rule in self.rule_list:
rule.print_rule()
print("default_class:", self.default_class)
class Rule(ruleitem.RuleItem):
"""
A class inherited from RuleItem, adding classCasesCovered and replace field.
"""
def __init__(self, cond_set, class_label, dataset):
ruleitem.RuleItem.__init__(self, cond_set, class_label, dataset)
self._init_classCasesCovered(dataset)
self.replace = set()
# initialize the classCasesCovered field
def _init_classCasesCovered(self, dataset):
class_column = [x[-1] for x in dataset]
class_label = set(class_column)
self.classCasesCovered = dict((x, 0) for x in class_label)
# convert ruleitem of class RuleItem to rule of class Rule
def ruleitem2rule(rule_item, dataset):
rule = Rule(rule_item.cond_set, rule_item.class_label, dataset)
return rule
# finds the highest precedence rule that covers the data case d from the set of rules having the same class as d.
def maxCoverRule_correct(cars_list, data_case):
for i in range(len(cars_list)):
if cars_list[i].class_label == data_case[-1]:
if cba_cb_m1.is_satisfy(data_case, cars_list[i]):
return i
return None
# finds the highest precedence rule that covers the data case d from the set of rules having the different class as d.
def maxCoverRule_wrong(cars_list, data_case):
for i in range(len(cars_list)):
if cars_list[i].class_label != data_case[-1]:
temp_data_case = data_case[:-1]
temp_data_case.append(cars_list[i].class_label)
if cba_cb_m1.is_satisfy(temp_data_case, cars_list[i]):
return i
return None
# compare two rule, return the precedence.
# -1: rule1 < rule2, 0: rule1 < rule2 (randomly here), 1: rule1 > rule2
def compare(rule1, rule2):
if rule1 is None and rule2 is not None:
return -1
elif rule1 is None and rule2 is None:
return 0
elif rule1 is not None and rule2 is None:
return 1
if rule1.confidence < rule2.confidence: # 1. the confidence of ri > rj
return -1
elif rule1.confidence == rule2.confidence:
if rule1.support < rule2.support: # 2. their confidences are the same, but support of ri > rj
return -1
elif rule1.support == rule2.support:
if len(rule1.cond_set) < len(rule2.cond_set): # 3. confidence & support are the same, ri earlier than rj
return 1
elif len(rule1.cond_set) == len(rule2.cond_set):
return 0
else:
return -1
else:
return 1
else:
return 1
# finds all the rules in u that wrongly classify the data case and have higher precedences than that of its cRule.
def allCoverRules(u, data_case, c_rule, cars_list):
w_set = set()
for rule_index in u:
# have higher precedences than cRule
if compare(cars_list[rule_index], c_rule) > 0:
# wrongly classify the data case
if cba_cb_m1.is_satisfy(data_case, cars_list[rule_index]) == False:
w_set.add(rule_index)
return w_set
# counts the number of training cases in each class
def compClassDistr(dataset):
class_distr = dict()
if len(dataset) <= 0:
class_distr = None
dataset_without_null = dataset
while [] in dataset_without_null:
dataset_without_null.remove([])
class_column = [x[-1] for x in dataset_without_null]
class_label = set(class_column)
for c in class_label:
class_distr[c] = class_column.count(c)
return class_distr
# sort the rule list order by precedence
def sort_with_index(q, cars_list):
def cmp_method(a, b):
# 1. the confidence of ri > rj
if cars_list[a].confidence < cars_list[b].confidence:
return 1
elif cars_list[a].confidence == cars_list[b].confidence:
# 2. their confidences are the same, but support of ri > rj
if cars_list[a].support < cars_list[b].support:
return 1
elif cars_list[a].support == cars_list[b].support:
# 3. both confidence & support are the same, ri earlier than rj
if len(cars_list[a].cond_set) < len(cars_list[b].cond_set):
return -1
elif len(cars_list[a].cond_set) == len(cars_list[b].cond_set):
return 0
else:
return 1
else:
return -1
else:
return -1
rule_list = list(q)
rule_list.sort(key=cmp_to_key(cmp_method))
return set(rule_list)
# get how many errors the rule wrongly classify the data case
def errorsOfRule(rule, dataset):
error_number = 0
for case in dataset:
if case:
if cba_cb_m1.is_satisfy(case, rule) == False:
error_number += 1
return error_number
# choose the default class (majority class in remaining dataset)
def selectDefault(class_distribution):
if class_distribution is None:
return None
max = 0
default_class = None
for index in class_distribution:
if class_distribution[index] > max:
max = class_distribution[index]
default_class = index
return default_class
# count the number of errors that the default class will make in the remaining training data
def defErr(default_class, class_distribution):
if class_distribution is None:
import sys
return sys.maxsize
error = 0
for index in class_distribution:
if index != default_class:
error += class_distribution[index]
return error
# main method, implement the whole classifier builder
def classifier_builder_m2(cars, dataset):
classifier = Classifier_m2()
cars_list = cba_cb_m1.sort(cars)
for i in range(len(cars_list)):
cars_list[i] = ruleitem2rule(cars_list[i], dataset)
# stage 1
q = set()
u = set()
a = set()
mark_set = set()
for i in range(len(dataset)):
c_rule_index = maxCoverRule_correct(cars_list, dataset[i])
w_rule_index = maxCoverRule_wrong(cars_list, dataset[i])
if c_rule_index is not None:
u.add(c_rule_index)
if c_rule_index:
cars_list[c_rule_index].classCasesCovered[dataset[i][-1]] += 1
if c_rule_index and w_rule_index:
if compare(cars_list[c_rule_index], cars_list[w_rule_index]) > 0:
q.add(c_rule_index)
mark_set.add(c_rule_index)
else:
a.add((i, dataset[i][-1], c_rule_index, w_rule_index))
elif c_rule_index is None and w_rule_index is not None:
a.add((i, dataset[i][-1], c_rule_index, w_rule_index))
# stage 2
for entry in a:
if cars_list[entry[3]] in mark_set:
if entry[2] is not None:
cars_list[entry[2]].classCasesCovered[entry[1]] -= 1
cars_list[entry[3]].classCasesCovered[entry[1]] += 1
else:
if entry[2] is not None:
w_set = allCoverRules(u, dataset[entry[0]], cars_list[entry[2]], cars_list)
else:
w_set = allCoverRules(u, dataset[entry[0]], None, cars_list)
for w in w_set:
cars_list[w].replace.add((entry[2], entry[0], entry[1]))
cars_list[w].classCasesCovered[entry[1]] += 1
q |= w_set
# stage 3
rule_errors = 0
q = sort_with_index(q, cars_list)
data_cases_covered = list([False] * len(dataset))
for r_index in q:
if cars_list[r_index].classCasesCovered[cars_list[r_index].class_label] != 0:
for entry in cars_list[r_index].replace:
if data_cases_covered[entry[1]]:
cars_list[r_index].classCasesCovered[entry[2]] -= 1
else:
if entry[0] is not None:
cars_list[entry[0]].classCasesCovered[entry[2]] -= 1
for i in range(len(dataset)):
datacase = dataset[i]
if datacase:
is_satisfy_value = cba_cb_m1.is_satisfy(datacase, cars_list[r_index])
if is_satisfy_value:
dataset[i] = []
data_cases_covered[i] = True
rule_errors += errorsOfRule(cars_list[r_index], dataset)
class_distribution = compClassDistr(dataset)
default_class = selectDefault(class_distribution)
default_errors = defErr(default_class, class_distribution)
total_errors = rule_errors + default_errors
classifier.add(cars_list[r_index], default_class, total_errors)
classifier.discard()
return classifier
# just for test
if __name__ == "__main__":
import cba_rg
dataset = [[1, 1, 1], [1, 1, 1], [1, 2, 1], [2, 2, 1], [2, 2, 1],
[2, 2, 0], [2, 3, 0], [2, 3, 0], [1, 1, 0], [3, 2, 0]]
minsup = 0.15
minconf = 0.6
cars = cba_rg.rule_generator(dataset, minsup, minconf)
classifier = classifier_builder_m2(cars, dataset)
classifier.print()
print()
dataset = [[1, 1, 1], [1, 1, 1], [1, 2, 1], [2, 2, 1], [2, 2, 1],
[2, 2, 0], [2, 3, 0], [2, 3, 0], [1, 1, 0], [3, 2, 0]]
cars.prune_rules(dataset)
cars.rules = cars.pruned_rules
classifier = classifier_builder_m2(cars, dataset)
classifier.print()