-
Notifications
You must be signed in to change notification settings - Fork 1
/
Base.py
73 lines (60 loc) · 2.51 KB
/
Base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,precision_score, recall_score, f1_score,roc_auc_score
def fit_svm(train_x,train_y,C):
model=svm.SVC(C,kernel='linear',gamma=10,decision_function_shape='ovo')
model.fit(train_x,train_y.ravel())
return model
def score(model,x,y):
confusionMatrix = confusion_matrix(y, model.predict(x), labels=[1, 0])
tp = confusionMatrix[0, 0]
fp = confusionMatrix[0, 1]
fn = confusionMatrix[1, 0]
tn = confusionMatrix[1, 1]
accuracy = (tp + tn) / (tp + fp + fn + tn)
precision = tp / (tp + fp)
specificity = tnr = tn / (tn + fp)
recall = tpr = tp / (tp + fn)
fpr = fp / (fp + tn)
f1 = 2 * precision * recall / (precision + recall)
gmean = (recall * specificity) ** 0.5
recall=recall_score(y, model.predict(x), labels=[1, 0])
f1 = f1_score(y, model.predict(x), labels=[1, 0])
auc =roc_auc_score(y, model.predict(x), labels=[1, 0])
return recall,f1,gmean,auc
if __name__ == '__main__':
normal_train = np.loadtxt(
open('/usr/CSMOTE/Datasets/origin/Car/train_maj.csv'),
delimiter=",",
skiprows=0)
normal_train = np.hstack((normal_train,np.zeros((normal_train.shape[0],1))))
fault_train = np.loadtxt(
open('/usr/CSMOTE/Datasets/origin/Car/train_min.csv'),
delimiter=",",
skiprows=0)
fault_train = np.hstack((fault_train, np.ones((fault_train.shape[0], 1))))
train_data = np.vstack((normal_train,fault_train))
np.random.shuffle(train_data)
train_x = train_data[:,0:577]
train_y = train_data[:,577:578]
normal_test = np.loadtxt(
open('/usr/CSMOTE/Datasets/origin/Car/test_maj.csv'),
delimiter=",",
skiprows=0)
normal_test = np.hstack((normal_test, np.zeros((normal_test.shape[0], 1))))
fault_test = np.loadtxt(
open('/usr/CSMOTE/Datasets/origin/Car/test_min.csv'),
delimiter=",",
skiprows=0)
fault_test = np.hstack((fault_test, np.ones((fault_test.shape[0], 1))))
test_data = np.vstack((normal_test ,fault_test ))
np.random.shuffle(test_data)
test_x = test_data[:,0:577]
test_y = test_data[:,577:578]
C = 10
model = fit_svm(train_x,train_y,C)
print(score(model, train_x, train_y))
print(score(model, test_x, test_y))