-
Notifications
You must be signed in to change notification settings - Fork 0
/
util_models.py
97 lines (82 loc) · 3.71 KB
/
util_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from util_libs import *
import torch.nn as nn
#####################################################
# Neural net architectures
####################################################
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.GroupNorm(2,planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.GroupNorm(2,planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.GroupNorm(2,self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.GroupNorm(2,64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 3)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def resnet18(n_c):
return ResNet(BasicBlock, [2,2,2,2], num_classes=n_c)
def get_model(model,n_c):
return resnet18(n_c)
class shake_transf(nn.Module):
def __init__(self, args):
super(shake_transf, self).__init__()
embedding_dim = 128
num_layers = args['num_layer']
hidden_size = 512
input_length = 80
self.n_cls = 80
self.embedding_dim = embedding_dim
self.embedding = nn.Embedding(input_length, embedding_dim)
self.position_encoder = nn.Embedding(input_length, embedding_dim)
encoder_layer = nn.TransformerEncoderLayer(d_model=embedding_dim, nhead=4, \
dim_feedforward=hidden_size, \
dropout=args['drop_out'])
self.transformer_encoder = nn.TransformerEncoder(encoder_layer=encoder_layer, num_layers=num_layers)
self.fc = nn.Linear(embedding_dim, self.n_cls)
def forward(self, x):
x = self.embedding(x) * math.sqrt(self.embedding_dim)
positions = torch.arange(0, x.size(1), device=x.device).unsqueeze(0).repeat(x.size(0), 1)
x = x + self.position_encoder(positions)
x = x.permute(1, 0, 2)
x = self.transformer_encoder(x)
x = x.permute(1, 0, 2)[:, -1, :]
x = self.fc(x)
return x