forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
228 lines (194 loc) · 7.58 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import paddle.fluid as fluid
from paddleslim.prune import Pruner
from paddleslim.analysis import flops
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results, json_eval_results
import ppdet.utils.checkpoint as checkpoint
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.data.reader import create_reader
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.cli import ArgsParser
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def main():
"""
Main evaluate function
"""
cfg = load_config(FLAGS.config)
merge_config(FLAGS.opt)
check_config(cfg)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu(cfg.use_gpu)
# check if paddlepaddle version is satisfied
check_version()
main_arch = cfg.architecture
multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)
# define executor
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
# build program
model = create(main_arch)
startup_prog = fluid.Program()
eval_prog = fluid.Program()
with fluid.program_guard(eval_prog, startup_prog):
with fluid.unique_name.guard():
inputs_def = cfg['EvalReader']['inputs_def']
feed_vars, loader = model.build_inputs(**inputs_def)
if multi_scale_test is None:
fetches = model.eval(feed_vars)
else:
fetches = model.eval(feed_vars, multi_scale_test)
eval_prog = eval_prog.clone(True)
exe.run(startup_prog)
reader = create_reader(cfg.EvalReader)
loader.set_sample_list_generator(reader, place)
dataset = cfg['EvalReader']['dataset']
# eval already exists json file
if FLAGS.json_eval:
logger.info(
"In json_eval mode, PaddleDetection will evaluate json files in "
"output_eval directly. And proposal.json, bbox.json and mask.json "
"will be detected by default.")
json_eval_results(
cfg.metric, json_directory=FLAGS.output_eval, dataset=dataset)
return
pruned_params = FLAGS.pruned_params
assert (
FLAGS.pruned_params is not None
), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
pruned_params = FLAGS.pruned_params.strip().split(",")
logger.info("pruned params: {}".format(pruned_params))
pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
logger.info("pruned ratios: {}".format(pruned_ratios))
assert (len(pruned_params) == len(pruned_ratios)
), "The length of pruned params and pruned ratios should be equal."
assert (pruned_ratios > [0] * len(pruned_ratios) and
pruned_ratios < [1] * len(pruned_ratios)
), "The elements of pruned ratios should be in range (0, 1)."
base_flops = flops(eval_prog)
pruner = Pruner()
eval_prog, _, _ = pruner.prune(
eval_prog,
fluid.global_scope(),
params=pruned_params,
ratios=pruned_ratios,
place=place,
only_graph=False)
pruned_flops = flops(eval_prog)
logger.info("pruned FLOPS: {}".format(
float(base_flops - pruned_flops) / base_flops))
compile_program = fluid.CompiledProgram(eval_prog).with_data_parallel()
assert cfg.metric != 'OID', "eval process of OID dataset \
is not supported."
if cfg.metric == "WIDERFACE":
raise ValueError("metric type {} does not support in tools/eval.py, "
"please use tools/face_eval.py".format(cfg.metric))
assert cfg.metric in ['COCO', 'VOC'], \
"unknown metric type {}".format(cfg.metric)
extra_keys = []
if cfg.metric == 'COCO':
extra_keys = ['im_info', 'im_id', 'im_shape']
if cfg.metric == 'VOC':
extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys)
# whether output bbox is normalized in model output layer
is_bbox_normalized = False
if hasattr(model, 'is_bbox_normalized') and \
callable(model.is_bbox_normalized):
is_bbox_normalized = model.is_bbox_normalized()
sub_eval_prog = None
sub_keys = None
sub_values = None
# build sub-program
if 'Mask' in main_arch and multi_scale_test:
sub_eval_prog = fluid.Program()
with fluid.program_guard(sub_eval_prog, startup_prog):
with fluid.unique_name.guard():
inputs_def = cfg['EvalReader']['inputs_def']
inputs_def['mask_branch'] = True
feed_vars, eval_loader = model.build_inputs(**inputs_def)
sub_fetches = model.eval(
feed_vars, multi_scale_test, mask_branch=True)
assert cfg.metric == 'COCO'
extra_keys = ['im_id', 'im_shape']
sub_keys, sub_values, _ = parse_fetches(sub_fetches, sub_eval_prog,
extra_keys)
sub_eval_prog = sub_eval_prog.clone(True)
# load model
if 'weights' in cfg:
checkpoint.load_checkpoint(exe, eval_prog, cfg.weights)
resolution = None
if 'Mask' in cfg.architecture:
resolution = model.mask_head.resolution
results = eval_run(
exe,
compile_program,
loader,
keys,
values,
cls,
cfg,
sub_eval_prog,
sub_keys,
sub_values,
resolution=resolution)
# if map_type not set, use default 11point, only use in VOC eval
map_type = cfg.map_type if 'map_type' in cfg else '11point'
eval_results(
results,
cfg.metric,
cfg.num_classes,
resolution,
is_bbox_normalized,
FLAGS.output_eval,
map_type,
dataset=dataset)
if __name__ == '__main__':
parser = ArgsParser()
parser.add_argument(
"--json_eval",
action='store_true',
default=False,
help="Whether to re eval with already exists bbox.json or mask.json")
parser.add_argument(
"-f",
"--output_eval",
default=None,
type=str,
help="Evaluation file directory, default is current directory.")
parser.add_argument(
"-p",
"--pruned_params",
default=None,
type=str,
help="The parameters to be pruned when calculating sensitivities.")
parser.add_argument(
"--pruned_ratios",
default=None,
type=str,
help="The ratios pruned iteratively for each parameter when calculating sensitivities."
)
FLAGS = parser.parse_args()
main()