forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
392 lines (334 loc) · 15.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import argparse
import os
import sys
from pathlib import Path
import numpy as np
import requests
import tensorrt as trt
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (AutoConfig, AutoProcessor, AutoTokenizer,
Blip2Processor, NougatProcessor, NougatTokenizerFast)
import tensorrt_llm
import tensorrt_llm.profiler as profiler
from tensorrt_llm import logger
from tensorrt_llm._utils import torch_to_numpy
from tensorrt_llm.runtime import ModelRunner, Session, TensorInfo
sys.path.append(str(Path(__file__).parent.parent))
from enc_dec.run import TRTLLMEncDecModel
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_new_tokens', type=int, default=30)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--visual_engine_dir',
type=str,
default=None,
help='Directory containing visual TRT engines')
parser.add_argument('--llm_engine_dir',
type=str,
default=None,
help='Directory containing TRT-LLM engines')
parser.add_argument('--hf_model_dir',
type=str,
default=None,
help="Directory containing tokenizer")
parser.add_argument(
'--decoder_llm',
action='store_true',
help='Whether LLM is decoder-only or an encoder-decoder variant?')
parser.add_argument('--blip2_encoder',
action='store_true',
help='Whether visual encoder is a BLIP2 model')
parser.add_argument('--nougat',
action='store_true',
help='Run nougat pipeline')
parser.add_argument('--input_text',
type=str,
default='Question: which city is this? Answer:',
help='Text prompt to LLM')
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument('--top_k', type=int, default=1)
return parser.parse_args()
def trt_dtype_to_torch(dtype):
if dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
elif dtype == trt.int32:
return torch.int32
else:
raise TypeError("%s is not supported" % dtype)
class MultiModalModel:
def __init__(self, args):
self.args = args
runtime_rank = tensorrt_llm.mpi_rank()
device_id = runtime_rank % torch.cuda.device_count()
torch.cuda.set_device(device_id)
self.stream = torch.cuda.current_stream().cuda_stream
self.init_image_encoder()
self.init_tokenizer()
self.init_llm()
def init_tokenizer(self):
if self.args.nougat:
self.tokenizer = NougatTokenizerFast.from_pretrained(
self.args.hf_model_dir)
else:
self.tokenizer = AutoTokenizer.from_pretrained(
self.args.hf_model_dir, use_fast=False, use_legacy=False)
self.tokenizer.padding_side = "right"
self.tokenizer.pad_token = self.tokenizer.eos_token
def init_image_encoder(self):
vit_path = os.path.join(self.args.visual_engine_dir,
'visual_encoder_fp16.engine')
logger.info(f'Loading engine from {vit_path}')
with open(vit_path, 'rb') as f:
engine_buffer = f.read()
logger.info(f'Creating session from engine {vit_path}')
self.visual_encoder_session = Session.from_serialized_engine(
engine_buffer)
def init_llm(self):
if self.args.decoder_llm:
self.model = ModelRunner.from_dir(self.args.llm_engine_dir,
rank=tensorrt_llm.mpi_rank(),
debug_mode=False)
self.model_config = self.model.session._model_config
else:
self.model = TRTLLMEncDecModel.from_engine(
self.args.hf_model_dir.split('/')[-1],
self.args.llm_engine_dir,
skip_encoder=self.args.nougat,
debug_mode=False)
if args.nougat:
self.model_config = self.model.decoder_model_config
self.runtime_mapping = self.model.decoder_runtime_mapping
else:
self.model_config = self.model.encoder_model_config
self.runtime_mapping = self.model.encoder_runtime_mapping
config = AutoConfig.from_pretrained(self.args.hf_model_dir)
decoder_start_id = config.decoder_start_token_id
if decoder_start_id is None:
decoder_start_id = self.tokenizer.bos_token_id
decoder_input_ids = torch.IntTensor([[decoder_start_id]]).to("cuda")
batch_size = self.args.batch_size
self.decoder_input_ids = decoder_input_ids.repeat((batch_size, 1))
def generate(self, pre_prompt, post_prompt, image, max_new_tokens):
profiler.start("Generate")
profiler.start("Vision")
visual_features, visual_atts = self.get_visual_features(image)
profiler.stop("Vision")
pre_input_ids = self.tokenizer(pre_prompt,
return_tensors="pt",
padding=True).input_ids.to("cuda")
if post_prompt[0] is not None:
post_input_ids = self.tokenizer(post_prompt,
return_tensors="pt",
padding=True).input_ids.to("cuda")
length = pre_input_ids.shape[1] + post_input_ids.shape[
1] + visual_atts.shape[1]
else:
post_input_ids = None
length = pre_input_ids.shape[1] + visual_atts.shape[1]
input_lengths = torch.IntTensor([length] * args.batch_size).to(
torch.int32).to("cuda")
input_ids, ptuning_args = self.setup_fake_prompts(
visual_features, pre_input_ids, post_input_ids, input_lengths)
if self.args.decoder_llm:
prompt_table = ptuning_args[0]
prompt_table = torch.stack([prompt_table])
np.save('prompt_table.npy', torch_to_numpy(prompt_table))
profiler.start("LLM")
if self.args.decoder_llm:
end_id = self.tokenizer.eos_token_id
if 'opt' in self.args.hf_model_dir and self.args.blip2_encoder:
# For BLIP2-OPT, model outputs a "\n" at the end.
# we avoid it by using newline as the end token
end_id = self.tokenizer.encode("\n",
add_special_tokens=False)[0]
output_ids = self.model.generate(
input_ids.to("cpu"),
sampling_config=None,
prompt_table_path='prompt_table.npy',
max_new_tokens=max_new_tokens,
end_id=end_id,
pad_id=self.tokenizer.pad_token_id,
top_k=self.args.top_k,
num_beams=self.args.num_beams,
output_sequence_lengths=False,
return_dict=False)
else:
if args.nougat:
# Trim encoder input_ids to match visual features shape
ids_shape = (self.args.batch_size, visual_features.shape[1])
input_ids = torch.zeros(ids_shape, dtype=torch.int32).to("cuda")
output_ids = self.model.generate(
input_ids,
self.decoder_input_ids,
max_new_tokens,
num_beams=self.args.num_beams,
bos_token_id=self.tokenizer.bos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
debug_mode=False,
prompt_embedding_table=ptuning_args[0],
prompt_tasks=ptuning_args[1],
prompt_vocab_size=ptuning_args[2])
# Reset input_lengths to match decoder_input_ids
input_lengths = torch.ones(input_lengths.shape,
dtype=input_lengths.dtype)
profiler.stop("LLM")
if tensorrt_llm.mpi_rank() == 0:
# Extract a list of tensors of shape beam_width x output_ids.
output_beams_list = [
self.tokenizer.batch_decode(
output_ids[batch_idx, :, input_lengths[batch_idx]:],
skip_special_tokens=True)
for batch_idx in range(self.args.batch_size)
]
stripped_text = [[
output_beams_list[batch_idx][beam_idx].strip()
for beam_idx in range(self.args.num_beams)
] for batch_idx in range(self.args.batch_size)]
profiler.stop("Generate")
return stripped_text
else:
profiler.stop("Generate")
return None
def get_visual_features(self, image):
visual_features = {'input': image.half()}
visual_output_info = self.visual_encoder_session.infer_shapes(
[TensorInfo('input', trt.DataType.HALF, image.shape)])
visual_outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device="cuda")
for t in visual_output_info
}
ok = self.visual_encoder_session.run(visual_features, visual_outputs,
self.stream)
assert ok, "Runtime execution failed for vit session"
torch.cuda.synchronize()
image_embeds = visual_outputs['output']
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to("cuda")
return image_embeds, image_atts
def setup_fake_prompts(self, visual_features, pre_input_ids, post_input_ids,
input_lengths):
# Assemble fake prompts which points to image embedding actually
fake_prompt_id = torch.arange(
self.model_config.vocab_size,
self.model_config.vocab_size +
visual_features.shape[0] * visual_features.shape[1],
device="cuda")
fake_prompt_id = fake_prompt_id.reshape(visual_features.shape[0],
visual_features.shape[1])
if post_input_ids is not None:
input_ids = [pre_input_ids, fake_prompt_id, post_input_ids]
else:
input_ids = [fake_prompt_id, pre_input_ids]
input_ids = torch.cat(input_ids,
dim=1).contiguous().to(torch.int32).cuda()
if self.args.decoder_llm or self.runtime_mapping.is_first_pp_rank():
ptuning_args = self.ptuning_setup(visual_features, input_ids,
input_lengths)
else:
ptuning_args = [None, None, None]
return input_ids, ptuning_args
def ptuning_setup(self, prompt_table, input_ids, input_lengths):
if prompt_table is not None:
task_vocab_size = torch.tensor([prompt_table.shape[1]],
dtype=torch.int32,
device="cuda")
prompt_table = prompt_table.view(
(prompt_table.shape[0] * prompt_table.shape[1],
prompt_table.shape[2]))
hidden_size = self.model_config.hidden_size
if not self.args.decoder_llm:
hidden_size *= self.runtime_mapping.tp_size
assert prompt_table.shape[
1] == hidden_size, "Prompt table dimensions do not match hidden size"
prompt_table = prompt_table.cuda().to(
dtype=tensorrt_llm._utils.str_dtype_to_torch(
self.model_config.dtype))
else:
prompt_table = torch.empty([1, hidden_size]).cuda()
task_vocab_size = torch.zeros([1]).cuda()
if self.model_config.remove_input_padding:
tasks = torch.zeros([torch.sum(input_lengths)],
dtype=torch.int32).cuda()
if args.decoder_llm: tasks = tasks.unsqueeze(0)
else:
tasks = torch.zeros(input_ids.shape, dtype=torch.int32).cuda()
return [prompt_table, tasks, task_vocab_size]
def load_test_image(model_name):
if "nougat" in model_name:
filepath = hf_hub_download(
repo_id="hf-internal-testing/fixtures_docvqa",
filename="nougat_paper.png",
repo_type="dataset")
image = Image.open(filepath)
else:
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
image = Image.open(requests.get(img_url,
stream=True).raw).convert('RGB')
return image
if __name__ == '__main__':
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
runtime_rank = tensorrt_llm.mpi_rank()
image = load_test_image(args.hf_model_dir)
if args.blip2_encoder:
if 'opt-2.7b' in args.hf_model_dir:
model_type = 'Salesforce/blip2-opt-2.7b'
else:
model_type = 'Salesforce/blip2-flan-t5-xl'
processor = Blip2Processor.from_pretrained(model_type)
inputs = processor(image, args.input_text,
return_tensors="pt").to("cuda")
image = inputs['pixel_values']
image = image.expand(args.batch_size, -1, -1,
-1).contiguous().to("cuda")
pre_prompt = args.input_text
post_prompt = None
elif args.nougat:
image_processor = NougatProcessor.from_pretrained(args.hf_model_dir)
image = image_processor(image, return_tensors="pt")['pixel_values']
image = image.half().to("cuda")
pre_prompt = args.input_text
post_prompt = None
else:
processor = AutoProcessor.from_pretrained(args.hf_model_dir)
image = processor(text=args.input_text,
images=image,
return_tensors="pt")['pixel_values']
image = image.half().to("cuda")
pre_prompt = "USER:\n"
post_prompt = args.input_text + " ASSISTANT:"
# Repeat inputs to match batch size
pre_prompt = [pre_prompt] * args.batch_size
post_prompt = [post_prompt] * args.batch_size
image = image.expand(args.batch_size, -1, -1, -1).contiguous()
model = MultiModalModel(args)
num_iters = 100
for _ in range(num_iters):
stripped_text = model.generate(pre_prompt, post_prompt, image,
args.max_new_tokens)
if runtime_rank == 0:
logger.info("---------------------------------------------------------")
logger.info(f"\n[Q] {args.input_text}")
logger.info(f"\n[A] {stripped_text}")
logger.info(
f'TensorRT vision encoder latency: {profiler.elapsed_time_in_sec("Vision") / num_iters} sec'
)
logger.info(
f'TensorRT-LLM LLM latency: {profiler.elapsed_time_in_sec("LLM") / num_iters} sec'
)
logger.info(
f'Generate latency: {profiler.elapsed_time_in_sec("Generate") / num_iters} sec'
)
logger.info("---------------------------------------------------------")