-
Notifications
You must be signed in to change notification settings - Fork 12.6k
/
Copy pathIRAttributes.cpp
1398 lines (1284 loc) · 55.3 KB
/
IRAttributes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- IRAttributes.cpp - Exports builtin and standard attributes ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <optional>
#include <string_view>
#include <utility>
#include "IRModule.h"
#include "PybindUtils.h"
#include "llvm/ADT/ScopeExit.h"
#include "mlir-c/BuiltinAttributes.h"
#include "mlir-c/BuiltinTypes.h"
#include "mlir/Bindings/Python/PybindAdaptors.h"
namespace py = pybind11;
using namespace mlir;
using namespace mlir::python;
using llvm::SmallVector;
//------------------------------------------------------------------------------
// Docstrings (trivial, non-duplicated docstrings are included inline).
//------------------------------------------------------------------------------
static const char kDenseElementsAttrGetDocstring[] =
R"(Gets a DenseElementsAttr from a Python buffer or array.
When `type` is not provided, then some limited type inferencing is done based
on the buffer format. Support presently exists for 8/16/32/64 signed and
unsigned integers and float16/float32/float64. DenseElementsAttrs of these
types can also be converted back to a corresponding buffer.
For conversions outside of these types, a `type=` must be explicitly provided
and the buffer contents must be bit-castable to the MLIR internal
representation:
* Integer types (except for i1): the buffer must be byte aligned to the
next byte boundary.
* Floating point types: Must be bit-castable to the given floating point
size.
* i1 (bool): Bit packed into 8bit words where the bit pattern matches a
row major ordering. An arbitrary Numpy `bool_` array can be bit packed to
this specification with: `np.packbits(ary, axis=None, bitorder='little')`.
If a single element buffer is passed (or for i1, a single byte with value 0
or 255), then a splat will be created.
Args:
array: The array or buffer to convert.
signless: If inferring an appropriate MLIR type, use signless types for
integers (defaults True).
type: Skips inference of the MLIR element type and uses this instead. The
storage size must be consistent with the actual contents of the buffer.
shape: Overrides the shape of the buffer when constructing the MLIR
shaped type. This is needed when the physical and logical shape differ (as
for i1).
context: Explicit context, if not from context manager.
Returns:
DenseElementsAttr on success.
Raises:
ValueError: If the type of the buffer or array cannot be matched to an MLIR
type or if the buffer does not meet expectations.
)";
static const char kDenseResourceElementsAttrGetFromBufferDocstring[] =
R"(Gets a DenseResourceElementsAttr from a Python buffer or array.
This function does minimal validation or massaging of the data, and it is
up to the caller to ensure that the buffer meets the characteristics
implied by the shape.
The backing buffer and any user objects will be retained for the lifetime
of the resource blob. This is typically bounded to the context but the
resource can have a shorter lifespan depending on how it is used in
subsequent processing.
Args:
buffer: The array or buffer to convert.
name: Name to provide to the resource (may be changed upon collision).
type: The explicit ShapedType to construct the attribute with.
context: Explicit context, if not from context manager.
Returns:
DenseResourceElementsAttr on success.
Raises:
ValueError: If the type of the buffer or array cannot be matched to an MLIR
type or if the buffer does not meet expectations.
)";
namespace {
static MlirStringRef toMlirStringRef(const std::string &s) {
return mlirStringRefCreate(s.data(), s.size());
}
class PyAffineMapAttribute : public PyConcreteAttribute<PyAffineMapAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAAffineMap;
static constexpr const char *pyClassName = "AffineMapAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirAffineMapAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyAffineMap &affineMap) {
MlirAttribute attr = mlirAffineMapAttrGet(affineMap.get());
return PyAffineMapAttribute(affineMap.getContext(), attr);
},
py::arg("affine_map"), "Gets an attribute wrapping an AffineMap.");
}
};
template <typename T>
static T pyTryCast(py::handle object) {
try {
return object.cast<T>();
} catch (py::cast_error &err) {
std::string msg =
std::string(
"Invalid attribute when attempting to create an ArrayAttribute (") +
err.what() + ")";
throw py::cast_error(msg);
} catch (py::reference_cast_error &err) {
std::string msg = std::string("Invalid attribute (None?) when attempting "
"to create an ArrayAttribute (") +
err.what() + ")";
throw py::cast_error(msg);
}
}
/// A python-wrapped dense array attribute with an element type and a derived
/// implementation class.
template <typename EltTy, typename DerivedT>
class PyDenseArrayAttribute : public PyConcreteAttribute<DerivedT> {
public:
using PyConcreteAttribute<DerivedT>::PyConcreteAttribute;
/// Iterator over the integer elements of a dense array.
class PyDenseArrayIterator {
public:
PyDenseArrayIterator(PyAttribute attr) : attr(std::move(attr)) {}
/// Return a copy of the iterator.
PyDenseArrayIterator dunderIter() { return *this; }
/// Return the next element.
EltTy dunderNext() {
// Throw if the index has reached the end.
if (nextIndex >= mlirDenseArrayGetNumElements(attr.get()))
throw py::stop_iteration();
return DerivedT::getElement(attr.get(), nextIndex++);
}
/// Bind the iterator class.
static void bind(py::module &m) {
py::class_<PyDenseArrayIterator>(m, DerivedT::pyIteratorName,
py::module_local())
.def("__iter__", &PyDenseArrayIterator::dunderIter)
.def("__next__", &PyDenseArrayIterator::dunderNext);
}
private:
/// The referenced dense array attribute.
PyAttribute attr;
/// The next index to read.
int nextIndex = 0;
};
/// Get the element at the given index.
EltTy getItem(intptr_t i) { return DerivedT::getElement(*this, i); }
/// Bind the attribute class.
static void bindDerived(typename PyConcreteAttribute<DerivedT>::ClassTy &c) {
// Bind the constructor.
c.def_static(
"get",
[](const std::vector<EltTy> &values, DefaultingPyMlirContext ctx) {
return getAttribute(values, ctx->getRef());
},
py::arg("values"), py::arg("context") = py::none(),
"Gets a uniqued dense array attribute");
// Bind the array methods.
c.def("__getitem__", [](DerivedT &arr, intptr_t i) {
if (i >= mlirDenseArrayGetNumElements(arr))
throw py::index_error("DenseArray index out of range");
return arr.getItem(i);
});
c.def("__len__", [](const DerivedT &arr) {
return mlirDenseArrayGetNumElements(arr);
});
c.def("__iter__",
[](const DerivedT &arr) { return PyDenseArrayIterator(arr); });
c.def("__add__", [](DerivedT &arr, const py::list &extras) {
std::vector<EltTy> values;
intptr_t numOldElements = mlirDenseArrayGetNumElements(arr);
values.reserve(numOldElements + py::len(extras));
for (intptr_t i = 0; i < numOldElements; ++i)
values.push_back(arr.getItem(i));
for (py::handle attr : extras)
values.push_back(pyTryCast<EltTy>(attr));
return getAttribute(values, arr.getContext());
});
}
private:
static DerivedT getAttribute(const std::vector<EltTy> &values,
PyMlirContextRef ctx) {
if constexpr (std::is_same_v<EltTy, bool>) {
std::vector<int> intValues(values.begin(), values.end());
MlirAttribute attr = DerivedT::getAttribute(ctx->get(), intValues.size(),
intValues.data());
return DerivedT(ctx, attr);
} else {
MlirAttribute attr =
DerivedT::getAttribute(ctx->get(), values.size(), values.data());
return DerivedT(ctx, attr);
}
}
};
/// Instantiate the python dense array classes.
struct PyDenseBoolArrayAttribute
: public PyDenseArrayAttribute<bool, PyDenseBoolArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseBoolArray;
static constexpr auto getAttribute = mlirDenseBoolArrayGet;
static constexpr auto getElement = mlirDenseBoolArrayGetElement;
static constexpr const char *pyClassName = "DenseBoolArrayAttr";
static constexpr const char *pyIteratorName = "DenseBoolArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseI8ArrayAttribute
: public PyDenseArrayAttribute<int8_t, PyDenseI8ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseI8Array;
static constexpr auto getAttribute = mlirDenseI8ArrayGet;
static constexpr auto getElement = mlirDenseI8ArrayGetElement;
static constexpr const char *pyClassName = "DenseI8ArrayAttr";
static constexpr const char *pyIteratorName = "DenseI8ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseI16ArrayAttribute
: public PyDenseArrayAttribute<int16_t, PyDenseI16ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseI16Array;
static constexpr auto getAttribute = mlirDenseI16ArrayGet;
static constexpr auto getElement = mlirDenseI16ArrayGetElement;
static constexpr const char *pyClassName = "DenseI16ArrayAttr";
static constexpr const char *pyIteratorName = "DenseI16ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseI32ArrayAttribute
: public PyDenseArrayAttribute<int32_t, PyDenseI32ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseI32Array;
static constexpr auto getAttribute = mlirDenseI32ArrayGet;
static constexpr auto getElement = mlirDenseI32ArrayGetElement;
static constexpr const char *pyClassName = "DenseI32ArrayAttr";
static constexpr const char *pyIteratorName = "DenseI32ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseI64ArrayAttribute
: public PyDenseArrayAttribute<int64_t, PyDenseI64ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseI64Array;
static constexpr auto getAttribute = mlirDenseI64ArrayGet;
static constexpr auto getElement = mlirDenseI64ArrayGetElement;
static constexpr const char *pyClassName = "DenseI64ArrayAttr";
static constexpr const char *pyIteratorName = "DenseI64ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseF32ArrayAttribute
: public PyDenseArrayAttribute<float, PyDenseF32ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseF32Array;
static constexpr auto getAttribute = mlirDenseF32ArrayGet;
static constexpr auto getElement = mlirDenseF32ArrayGetElement;
static constexpr const char *pyClassName = "DenseF32ArrayAttr";
static constexpr const char *pyIteratorName = "DenseF32ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseF64ArrayAttribute
: public PyDenseArrayAttribute<double, PyDenseF64ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseF64Array;
static constexpr auto getAttribute = mlirDenseF64ArrayGet;
static constexpr auto getElement = mlirDenseF64ArrayGetElement;
static constexpr const char *pyClassName = "DenseF64ArrayAttr";
static constexpr const char *pyIteratorName = "DenseF64ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
class PyArrayAttribute : public PyConcreteAttribute<PyArrayAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAArray;
static constexpr const char *pyClassName = "ArrayAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirArrayAttrGetTypeID;
class PyArrayAttributeIterator {
public:
PyArrayAttributeIterator(PyAttribute attr) : attr(std::move(attr)) {}
PyArrayAttributeIterator &dunderIter() { return *this; }
MlirAttribute dunderNext() {
// TODO: Throw is an inefficient way to stop iteration.
if (nextIndex >= mlirArrayAttrGetNumElements(attr.get()))
throw py::stop_iteration();
return mlirArrayAttrGetElement(attr.get(), nextIndex++);
}
static void bind(py::module &m) {
py::class_<PyArrayAttributeIterator>(m, "ArrayAttributeIterator",
py::module_local())
.def("__iter__", &PyArrayAttributeIterator::dunderIter)
.def("__next__", &PyArrayAttributeIterator::dunderNext);
}
private:
PyAttribute attr;
int nextIndex = 0;
};
MlirAttribute getItem(intptr_t i) {
return mlirArrayAttrGetElement(*this, i);
}
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](py::list attributes, DefaultingPyMlirContext context) {
SmallVector<MlirAttribute> mlirAttributes;
mlirAttributes.reserve(py::len(attributes));
for (auto attribute : attributes) {
mlirAttributes.push_back(pyTryCast<PyAttribute>(attribute));
}
MlirAttribute attr = mlirArrayAttrGet(
context->get(), mlirAttributes.size(), mlirAttributes.data());
return PyArrayAttribute(context->getRef(), attr);
},
py::arg("attributes"), py::arg("context") = py::none(),
"Gets a uniqued Array attribute");
c.def("__getitem__",
[](PyArrayAttribute &arr, intptr_t i) {
if (i >= mlirArrayAttrGetNumElements(arr))
throw py::index_error("ArrayAttribute index out of range");
return arr.getItem(i);
})
.def("__len__",
[](const PyArrayAttribute &arr) {
return mlirArrayAttrGetNumElements(arr);
})
.def("__iter__", [](const PyArrayAttribute &arr) {
return PyArrayAttributeIterator(arr);
});
c.def("__add__", [](PyArrayAttribute arr, py::list extras) {
std::vector<MlirAttribute> attributes;
intptr_t numOldElements = mlirArrayAttrGetNumElements(arr);
attributes.reserve(numOldElements + py::len(extras));
for (intptr_t i = 0; i < numOldElements; ++i)
attributes.push_back(arr.getItem(i));
for (py::handle attr : extras)
attributes.push_back(pyTryCast<PyAttribute>(attr));
MlirAttribute arrayAttr = mlirArrayAttrGet(
arr.getContext()->get(), attributes.size(), attributes.data());
return PyArrayAttribute(arr.getContext(), arrayAttr);
});
}
};
/// Float Point Attribute subclass - FloatAttr.
class PyFloatAttribute : public PyConcreteAttribute<PyFloatAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAFloat;
static constexpr const char *pyClassName = "FloatAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirFloatAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyType &type, double value, DefaultingPyLocation loc) {
PyMlirContext::ErrorCapture errors(loc->getContext());
MlirAttribute attr = mlirFloatAttrDoubleGetChecked(loc, type, value);
if (mlirAttributeIsNull(attr))
throw MLIRError("Invalid attribute", errors.take());
return PyFloatAttribute(type.getContext(), attr);
},
py::arg("type"), py::arg("value"), py::arg("loc") = py::none(),
"Gets an uniqued float point attribute associated to a type");
c.def_static(
"get_f32",
[](double value, DefaultingPyMlirContext context) {
MlirAttribute attr = mlirFloatAttrDoubleGet(
context->get(), mlirF32TypeGet(context->get()), value);
return PyFloatAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets an uniqued float point attribute associated to a f32 type");
c.def_static(
"get_f64",
[](double value, DefaultingPyMlirContext context) {
MlirAttribute attr = mlirFloatAttrDoubleGet(
context->get(), mlirF64TypeGet(context->get()), value);
return PyFloatAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets an uniqued float point attribute associated to a f64 type");
c.def_property_readonly("value", mlirFloatAttrGetValueDouble,
"Returns the value of the float attribute");
c.def("__float__", mlirFloatAttrGetValueDouble,
"Converts the value of the float attribute to a Python float");
}
};
/// Integer Attribute subclass - IntegerAttr.
class PyIntegerAttribute : public PyConcreteAttribute<PyIntegerAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAInteger;
static constexpr const char *pyClassName = "IntegerAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyType &type, int64_t value) {
MlirAttribute attr = mlirIntegerAttrGet(type, value);
return PyIntegerAttribute(type.getContext(), attr);
},
py::arg("type"), py::arg("value"),
"Gets an uniqued integer attribute associated to a type");
c.def_property_readonly("value", toPyInt,
"Returns the value of the integer attribute");
c.def("__int__", toPyInt,
"Converts the value of the integer attribute to a Python int");
c.def_property_readonly_static("static_typeid",
[](py::object & /*class*/) -> MlirTypeID {
return mlirIntegerAttrGetTypeID();
});
}
private:
static py::int_ toPyInt(PyIntegerAttribute &self) {
MlirType type = mlirAttributeGetType(self);
if (mlirTypeIsAIndex(type) || mlirIntegerTypeIsSignless(type))
return mlirIntegerAttrGetValueInt(self);
if (mlirIntegerTypeIsSigned(type))
return mlirIntegerAttrGetValueSInt(self);
return mlirIntegerAttrGetValueUInt(self);
}
};
/// Bool Attribute subclass - BoolAttr.
class PyBoolAttribute : public PyConcreteAttribute<PyBoolAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsABool;
static constexpr const char *pyClassName = "BoolAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](bool value, DefaultingPyMlirContext context) {
MlirAttribute attr = mlirBoolAttrGet(context->get(), value);
return PyBoolAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets an uniqued bool attribute");
c.def_property_readonly("value", mlirBoolAttrGetValue,
"Returns the value of the bool attribute");
c.def("__bool__", mlirBoolAttrGetValue,
"Converts the value of the bool attribute to a Python bool");
}
};
class PySymbolRefAttribute : public PyConcreteAttribute<PySymbolRefAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsASymbolRef;
static constexpr const char *pyClassName = "SymbolRefAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static MlirAttribute fromList(const std::vector<std::string> &symbols,
PyMlirContext &context) {
if (symbols.empty())
throw std::runtime_error("SymbolRefAttr must be composed of at least "
"one symbol.");
MlirStringRef rootSymbol = toMlirStringRef(symbols[0]);
SmallVector<MlirAttribute, 3> referenceAttrs;
for (size_t i = 1; i < symbols.size(); ++i) {
referenceAttrs.push_back(
mlirFlatSymbolRefAttrGet(context.get(), toMlirStringRef(symbols[i])));
}
return mlirSymbolRefAttrGet(context.get(), rootSymbol,
referenceAttrs.size(), referenceAttrs.data());
}
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](const std::vector<std::string> &symbols,
DefaultingPyMlirContext context) {
return PySymbolRefAttribute::fromList(symbols, context.resolve());
},
py::arg("symbols"), py::arg("context") = py::none(),
"Gets a uniqued SymbolRef attribute from a list of symbol names");
c.def_property_readonly(
"value",
[](PySymbolRefAttribute &self) {
std::vector<std::string> symbols = {
unwrap(mlirSymbolRefAttrGetRootReference(self)).str()};
for (int i = 0; i < mlirSymbolRefAttrGetNumNestedReferences(self);
++i)
symbols.push_back(
unwrap(mlirSymbolRefAttrGetRootReference(
mlirSymbolRefAttrGetNestedReference(self, i)))
.str());
return symbols;
},
"Returns the value of the SymbolRef attribute as a list[str]");
}
};
class PyFlatSymbolRefAttribute
: public PyConcreteAttribute<PyFlatSymbolRefAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAFlatSymbolRef;
static constexpr const char *pyClassName = "FlatSymbolRefAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::string value, DefaultingPyMlirContext context) {
MlirAttribute attr =
mlirFlatSymbolRefAttrGet(context->get(), toMlirStringRef(value));
return PyFlatSymbolRefAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets a uniqued FlatSymbolRef attribute");
c.def_property_readonly(
"value",
[](PyFlatSymbolRefAttribute &self) {
MlirStringRef stringRef = mlirFlatSymbolRefAttrGetValue(self);
return py::str(stringRef.data, stringRef.length);
},
"Returns the value of the FlatSymbolRef attribute as a string");
}
};
class PyOpaqueAttribute : public PyConcreteAttribute<PyOpaqueAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAOpaque;
static constexpr const char *pyClassName = "OpaqueAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirOpaqueAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::string dialectNamespace, py::buffer buffer, PyType &type,
DefaultingPyMlirContext context) {
const py::buffer_info bufferInfo = buffer.request();
intptr_t bufferSize = bufferInfo.size;
MlirAttribute attr = mlirOpaqueAttrGet(
context->get(), toMlirStringRef(dialectNamespace), bufferSize,
static_cast<char *>(bufferInfo.ptr), type);
return PyOpaqueAttribute(context->getRef(), attr);
},
py::arg("dialect_namespace"), py::arg("buffer"), py::arg("type"),
py::arg("context") = py::none(), "Gets an Opaque attribute.");
c.def_property_readonly(
"dialect_namespace",
[](PyOpaqueAttribute &self) {
MlirStringRef stringRef = mlirOpaqueAttrGetDialectNamespace(self);
return py::str(stringRef.data, stringRef.length);
},
"Returns the dialect namespace for the Opaque attribute as a string");
c.def_property_readonly(
"data",
[](PyOpaqueAttribute &self) {
MlirStringRef stringRef = mlirOpaqueAttrGetData(self);
return py::bytes(stringRef.data, stringRef.length);
},
"Returns the data for the Opaqued attributes as `bytes`");
}
};
class PyStringAttribute : public PyConcreteAttribute<PyStringAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAString;
static constexpr const char *pyClassName = "StringAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirStringAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::string value, DefaultingPyMlirContext context) {
MlirAttribute attr =
mlirStringAttrGet(context->get(), toMlirStringRef(value));
return PyStringAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets a uniqued string attribute");
c.def_static(
"get_typed",
[](PyType &type, std::string value) {
MlirAttribute attr =
mlirStringAttrTypedGet(type, toMlirStringRef(value));
return PyStringAttribute(type.getContext(), attr);
},
py::arg("type"), py::arg("value"),
"Gets a uniqued string attribute associated to a type");
c.def_property_readonly(
"value",
[](PyStringAttribute &self) {
MlirStringRef stringRef = mlirStringAttrGetValue(self);
return py::str(stringRef.data, stringRef.length);
},
"Returns the value of the string attribute");
c.def_property_readonly(
"value_bytes",
[](PyStringAttribute &self) {
MlirStringRef stringRef = mlirStringAttrGetValue(self);
return py::bytes(stringRef.data, stringRef.length);
},
"Returns the value of the string attribute as `bytes`");
}
};
// TODO: Support construction of string elements.
class PyDenseElementsAttribute
: public PyConcreteAttribute<PyDenseElementsAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseElements;
static constexpr const char *pyClassName = "DenseElementsAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static PyDenseElementsAttribute
getFromBuffer(py::buffer array, bool signless,
std::optional<PyType> explicitType,
std::optional<std::vector<int64_t>> explicitShape,
DefaultingPyMlirContext contextWrapper) {
// Request a contiguous view. In exotic cases, this will cause a copy.
int flags = PyBUF_ND;
if (!explicitType) {
flags |= PyBUF_FORMAT;
}
Py_buffer view;
if (PyObject_GetBuffer(array.ptr(), &view, flags) != 0) {
throw py::error_already_set();
}
auto freeBuffer = llvm::make_scope_exit([&]() { PyBuffer_Release(&view); });
SmallVector<int64_t> shape;
if (explicitShape) {
shape.append(explicitShape->begin(), explicitShape->end());
} else {
shape.append(view.shape, view.shape + view.ndim);
}
MlirAttribute encodingAttr = mlirAttributeGetNull();
MlirContext context = contextWrapper->get();
// Detect format codes that are suitable for bulk loading. This includes
// all byte aligned integer and floating point types up to 8 bytes.
// Notably, this excludes, bool (which needs to be bit-packed) and
// other exotics which do not have a direct representation in the buffer
// protocol (i.e. complex, etc).
std::optional<MlirType> bulkLoadElementType;
if (explicitType) {
bulkLoadElementType = *explicitType;
} else {
std::string_view format(view.format);
if (format == "f") {
// f32
assert(view.itemsize == 4 && "mismatched array itemsize");
bulkLoadElementType = mlirF32TypeGet(context);
} else if (format == "d") {
// f64
assert(view.itemsize == 8 && "mismatched array itemsize");
bulkLoadElementType = mlirF64TypeGet(context);
} else if (format == "e") {
// f16
assert(view.itemsize == 2 && "mismatched array itemsize");
bulkLoadElementType = mlirF16TypeGet(context);
} else if (isSignedIntegerFormat(format)) {
if (view.itemsize == 4) {
// i32
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 32)
: mlirIntegerTypeSignedGet(context, 32);
} else if (view.itemsize == 8) {
// i64
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 64)
: mlirIntegerTypeSignedGet(context, 64);
} else if (view.itemsize == 1) {
// i8
bulkLoadElementType = signless ? mlirIntegerTypeGet(context, 8)
: mlirIntegerTypeSignedGet(context, 8);
} else if (view.itemsize == 2) {
// i16
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 16)
: mlirIntegerTypeSignedGet(context, 16);
}
} else if (isUnsignedIntegerFormat(format)) {
if (view.itemsize == 4) {
// unsigned i32
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 32)
: mlirIntegerTypeUnsignedGet(context, 32);
} else if (view.itemsize == 8) {
// unsigned i64
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 64)
: mlirIntegerTypeUnsignedGet(context, 64);
} else if (view.itemsize == 1) {
// i8
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 8)
: mlirIntegerTypeUnsignedGet(context, 8);
} else if (view.itemsize == 2) {
// i16
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 16)
: mlirIntegerTypeUnsignedGet(context, 16);
}
}
if (!bulkLoadElementType) {
throw std::invalid_argument(
std::string("unimplemented array format conversion from format: ") +
std::string(format));
}
}
MlirType shapedType;
if (mlirTypeIsAShaped(*bulkLoadElementType)) {
if (explicitShape) {
throw std::invalid_argument("Shape can only be specified explicitly "
"when the type is not a shaped type.");
}
shapedType = *bulkLoadElementType;
} else {
shapedType = mlirRankedTensorTypeGet(shape.size(), shape.data(),
*bulkLoadElementType, encodingAttr);
}
size_t rawBufferSize = view.len;
MlirAttribute attr =
mlirDenseElementsAttrRawBufferGet(shapedType, rawBufferSize, view.buf);
if (mlirAttributeIsNull(attr)) {
throw std::invalid_argument(
"DenseElementsAttr could not be constructed from the given buffer. "
"This may mean that the Python buffer layout does not match that "
"MLIR expected layout and is a bug.");
}
return PyDenseElementsAttribute(contextWrapper->getRef(), attr);
}
static PyDenseElementsAttribute getSplat(const PyType &shapedType,
PyAttribute &elementAttr) {
auto contextWrapper =
PyMlirContext::forContext(mlirTypeGetContext(shapedType));
if (!mlirAttributeIsAInteger(elementAttr) &&
!mlirAttributeIsAFloat(elementAttr)) {
std::string message = "Illegal element type for DenseElementsAttr: ";
message.append(py::repr(py::cast(elementAttr)));
throw py::value_error(message);
}
if (!mlirTypeIsAShaped(shapedType) ||
!mlirShapedTypeHasStaticShape(shapedType)) {
std::string message =
"Expected a static ShapedType for the shaped_type parameter: ";
message.append(py::repr(py::cast(shapedType)));
throw py::value_error(message);
}
MlirType shapedElementType = mlirShapedTypeGetElementType(shapedType);
MlirType attrType = mlirAttributeGetType(elementAttr);
if (!mlirTypeEqual(shapedElementType, attrType)) {
std::string message =
"Shaped element type and attribute type must be equal: shaped=";
message.append(py::repr(py::cast(shapedType)));
message.append(", element=");
message.append(py::repr(py::cast(elementAttr)));
throw py::value_error(message);
}
MlirAttribute elements =
mlirDenseElementsAttrSplatGet(shapedType, elementAttr);
return PyDenseElementsAttribute(contextWrapper->getRef(), elements);
}
intptr_t dunderLen() { return mlirElementsAttrGetNumElements(*this); }
py::buffer_info accessBuffer() {
MlirType shapedType = mlirAttributeGetType(*this);
MlirType elementType = mlirShapedTypeGetElementType(shapedType);
std::string format;
if (mlirTypeIsAF32(elementType)) {
// f32
return bufferInfo<float>(shapedType);
}
if (mlirTypeIsAF64(elementType)) {
// f64
return bufferInfo<double>(shapedType);
}
if (mlirTypeIsAF16(elementType)) {
// f16
return bufferInfo<uint16_t>(shapedType, "e");
}
if (mlirTypeIsAIndex(elementType)) {
// Same as IndexType::kInternalStorageBitWidth
return bufferInfo<int64_t>(shapedType);
}
if (mlirTypeIsAInteger(elementType) &&
mlirIntegerTypeGetWidth(elementType) == 32) {
if (mlirIntegerTypeIsSignless(elementType) ||
mlirIntegerTypeIsSigned(elementType)) {
// i32
return bufferInfo<int32_t>(shapedType);
}
if (mlirIntegerTypeIsUnsigned(elementType)) {
// unsigned i32
return bufferInfo<uint32_t>(shapedType);
}
} else if (mlirTypeIsAInteger(elementType) &&
mlirIntegerTypeGetWidth(elementType) == 64) {
if (mlirIntegerTypeIsSignless(elementType) ||
mlirIntegerTypeIsSigned(elementType)) {
// i64
return bufferInfo<int64_t>(shapedType);
}
if (mlirIntegerTypeIsUnsigned(elementType)) {
// unsigned i64
return bufferInfo<uint64_t>(shapedType);
}
} else if (mlirTypeIsAInteger(elementType) &&
mlirIntegerTypeGetWidth(elementType) == 8) {
if (mlirIntegerTypeIsSignless(elementType) ||
mlirIntegerTypeIsSigned(elementType)) {
// i8
return bufferInfo<int8_t>(shapedType);
}
if (mlirIntegerTypeIsUnsigned(elementType)) {
// unsigned i8
return bufferInfo<uint8_t>(shapedType);
}
} else if (mlirTypeIsAInteger(elementType) &&
mlirIntegerTypeGetWidth(elementType) == 16) {
if (mlirIntegerTypeIsSignless(elementType) ||
mlirIntegerTypeIsSigned(elementType)) {
// i16
return bufferInfo<int16_t>(shapedType);
}
if (mlirIntegerTypeIsUnsigned(elementType)) {
// unsigned i16
return bufferInfo<uint16_t>(shapedType);
}
}
// TODO: Currently crashes the program.
// Reported as https://github.com/pybind/pybind11/issues/3336
throw std::invalid_argument(
"unsupported data type for conversion to Python buffer");
}
static void bindDerived(ClassTy &c) {
c.def("__len__", &PyDenseElementsAttribute::dunderLen)
.def_static("get", PyDenseElementsAttribute::getFromBuffer,
py::arg("array"), py::arg("signless") = true,
py::arg("type") = py::none(), py::arg("shape") = py::none(),
py::arg("context") = py::none(),
kDenseElementsAttrGetDocstring)
.def_static("get_splat", PyDenseElementsAttribute::getSplat,
py::arg("shaped_type"), py::arg("element_attr"),
"Gets a DenseElementsAttr where all values are the same")
.def_property_readonly("is_splat",
[](PyDenseElementsAttribute &self) -> bool {
return mlirDenseElementsAttrIsSplat(self);
})
.def("get_splat_value",
[](PyDenseElementsAttribute &self) {
if (!mlirDenseElementsAttrIsSplat(self))
throw py::value_error(
"get_splat_value called on a non-splat attribute");
return mlirDenseElementsAttrGetSplatValue(self);
})
.def_buffer(&PyDenseElementsAttribute::accessBuffer);
}
private:
static bool isUnsignedIntegerFormat(std::string_view format) {
if (format.empty())
return false;
char code = format[0];
return code == 'I' || code == 'B' || code == 'H' || code == 'L' ||
code == 'Q';
}
static bool isSignedIntegerFormat(std::string_view format) {
if (format.empty())
return false;
char code = format[0];
return code == 'i' || code == 'b' || code == 'h' || code == 'l' ||
code == 'q';
}
template <typename Type>
py::buffer_info bufferInfo(MlirType shapedType,
const char *explicitFormat = nullptr) {
intptr_t rank = mlirShapedTypeGetRank(shapedType);
// Prepare the data for the buffer_info.
// Buffer is configured for read-only access below.
Type *data = static_cast<Type *>(
const_cast<void *>(mlirDenseElementsAttrGetRawData(*this)));
// Prepare the shape for the buffer_info.
SmallVector<intptr_t, 4> shape;
for (intptr_t i = 0; i < rank; ++i)
shape.push_back(mlirShapedTypeGetDimSize(shapedType, i));
// Prepare the strides for the buffer_info.
SmallVector<intptr_t, 4> strides;
if (mlirDenseElementsAttrIsSplat(*this)) {
// Splats are special, only the single value is stored.
strides.assign(rank, 0);
} else {
for (intptr_t i = 1; i < rank; ++i) {
intptr_t strideFactor = 1;
for (intptr_t j = i; j < rank; ++j)
strideFactor *= mlirShapedTypeGetDimSize(shapedType, j);
strides.push_back(sizeof(Type) * strideFactor);
}
strides.push_back(sizeof(Type));
}
std::string format;
if (explicitFormat) {
format = explicitFormat;
} else {
format = py::format_descriptor<Type>::format();
}
return py::buffer_info(data, sizeof(Type), format, rank, shape, strides,
/*readonly=*/true);
}
}; // namespace
/// Refinement of the PyDenseElementsAttribute for attributes containing integer
/// (and boolean) values. Supports element access.
class PyDenseIntElementsAttribute
: public PyConcreteAttribute<PyDenseIntElementsAttribute,
PyDenseElementsAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseIntElements;
static constexpr const char *pyClassName = "DenseIntElementsAttr";
using PyConcreteAttribute::PyConcreteAttribute;
/// Returns the element at the given linear position. Asserts if the index is
/// out of range.
py::int_ dunderGetItem(intptr_t pos) {
if (pos < 0 || pos >= dunderLen()) {
throw py::index_error("attempt to access out of bounds element");
}
MlirType type = mlirAttributeGetType(*this);
type = mlirShapedTypeGetElementType(type);
assert(mlirTypeIsAInteger(type) &&
"expected integer element type in dense int elements attribute");
// Dispatch element extraction to an appropriate C function based on the
// elemental type of the attribute. py::int_ is implicitly constructible
// from any C++ integral type and handles bitwidth correctly.
// TODO: consider caching the type properties in the constructor to avoid
// querying them on each element access.
unsigned width = mlirIntegerTypeGetWidth(type);
bool isUnsigned = mlirIntegerTypeIsUnsigned(type);
if (isUnsigned) {
if (width == 1) {
return mlirDenseElementsAttrGetBoolValue(*this, pos);
}
if (width == 8) {
return mlirDenseElementsAttrGetUInt8Value(*this, pos);
}
if (width == 16) {
return mlirDenseElementsAttrGetUInt16Value(*this, pos);
}
if (width == 32) {
return mlirDenseElementsAttrGetUInt32Value(*this, pos);
}
if (width == 64) {
return mlirDenseElementsAttrGetUInt64Value(*this, pos);
}