-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdump_attack_results.py
232 lines (192 loc) · 8.44 KB
/
dump_attack_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import sys
from utils import read_orig_Rs
import numpy as np
import matplotlib
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
from matplotlib import pyplot as plt
new_radius_dir = 'data/new-radius'
orig_radius_dir = 'data/orig-radius'
# place to store the output human-friendly or TeX-friendly tables and figures
result_folder = 'result/attack'
if not os.path.exists(result_folder):
os.makedirs(result_folder)
def plot_original_curve(model, disttype, k, sigma, N, alpha):
raw_orig_Rs = read_orig_Rs(os.path.join(orig_radius_dir, model, f'orig-rad-{disttype}-{k}-{sigma}-{N}-{alpha}.txt'),
[])
slots = [[item[0], item[1]] for item in raw_orig_Rs]
rads = np.sort(np.array(slots)[:, 1])
tot = len(slots)
rads = rads[rads >= 1e-6]
x = (rads).tolist()
y = list(np.array(range(len(rads)-1, -1, -1)) / tot)
return x, y
def plot_improved_curve(model, disttype, k, sigma, betas, N, alpha, print_detail=False):
orig_disttype = disttype[:-3] if disttype.endswith('-th') else disttype
raw_orig_Rs = read_orig_Rs(os.path.join(orig_radius_dir, model, f'orig-rad-{orig_disttype}-{k}-{sigma}-{N}-{alpha}.txt'),
[])
slots = [[item[0], item[1]] + [None for _ in betas] for item in raw_orig_Rs]
slot_idx = dict([(item[0], i) for i, item in enumerate(slots)])
for beta_i, beta in enumerate(betas):
fname = f'new-rad-{disttype}-{k}-{sigma}-{beta}-{N}-{alpha}.txt'
with open(os.path.join(new_radius_dir, model, fname), 'r') as f:
for line in f.readlines():
line = line.strip()
line_fields = line.split(' ')
no, new_r = int(line_fields[0]), float(line_fields[1])
slots[slot_idx[no]][2 + beta_i] = new_r
arr = np.array(slots)[:, 1:]
arr = arr.max(axis=1)
rads = np.sort(arr)
tot = len(rads)
rads = rads[rads >= 1e-6]
x = (rads).tolist()
y = list(np.array(range(len(rads)-1, -1, -1)) / tot)
return x, y
def plot_attacked_curve(model, disttype, k, sigma, eot_sample, step, pgd=False, start=10):
files = os.listdir('data/attack/' + model)
prefix = f'stats-{disttype}-{k}-{sigma}-sample-{eot_sample}-L-2-eps-'
files = [fm for fm in files if fm.startswith(prefix)]
if pgd:
suffix = f'-step-{step}-pgd-start-{start}.txt'
else:
suffix = f'-step-{step}.txt'
files = [fm for fm in files if fm.endswith(suffix)]
filtered_radius = list()
for f in files:
filtered_radius.append(float(f[len(prefix): -len(suffix)]))
print('filtered radius:', filtered_radius)
x = []
y = []
for i, r in enumerate(filtered_radius):
with open('data/attack/' + model + f'/{prefix}{r}{suffix}', 'r') as f:
line = f.readlines()
if len(line) > 0:
line = line[0]
else:
continue
N, corN, robN, corAcc, robAcc = line.split(' ')
if 0. not in x:
x.append(0.)
y.append(float(corAcc))
x.append(float(r))
y.append(float(robAcc))
x = np.array(x)
y = np.array(y)[np.argsort(x)]
x = x[np.argsort(x)]
return x, y
if __name__ == '__main__':
np.set_printoptions(precision=4)
if not os.path.exists(result_folder):
os.makedirs(result_folder)
# generic options
N = 100000
alpha = 0.0005
disttype = 'general-gaussian'
""" Attacking smoothmix-mnist-380-0.50 """
model = 'smoothmix'
dataset = 'mnist'
k = 380
sigma = 0.5
eot_sample = 100
step = 200
plt.clf()
plt.style.use('seaborn')
plt.ylabel('Robust Accuracy', fontsize=14)
plt.xlabel('$r$', fontsize=14)
plt.title('MNIST SmoothMix $\sigma=0.50$, Certified Accuracy vs. Empirical Upper Bound')
x, y = plot_original_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian', k, sigma, N, 0.001)
plt.plot(x, y, label='Neyman-Pearson Certification')
x, y = plot_improved_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian-th', k, sigma, ['x+'], N//2, 0.0005)
plt.plot(x, y, label='DSRS Certification')
x, y = plot_attacked_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian', k, sigma, eot_sample, step)
plt.plot(x, y, '-o', label='Upper bound from I-FGSM Attack')
x, y = plot_attacked_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian', k, sigma, eot_sample, step, pgd=True)
plt.plot(x, y, '-o', label='Upper bound from PGD Attack')
plt.legend()
plt.savefig(result_folder + '/smoothmix_mnist_0.50_380.pdf')
# plt.show()
""" Attacking smoothmix-cifar-1530-0.50 """
model = 'smoothmix'
dataset = 'cifar'
k = 1530
sigma = 0.5
eot_sample = 100
step = 200
plt.clf()
plt.style.use('seaborn')
plt.ylabel('Robust Accuracy', fontsize=14)
plt.xlabel('$r$', fontsize=14)
plt.title('CIFAR-10 SmoothMix $\sigma=0.50$, Certified Accuracy vs. Empirical Upper Bound')
x, y = plot_original_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian', k, sigma, N, 0.001)
plt.plot(x, y, label='Neyman-Pearson Certification')
x, y = plot_improved_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian-th', k, sigma, ['x+'], N//2, 0.0005)
plt.plot(x, y, label='DSRS Certification')
x, y = plot_attacked_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian', k, sigma, eot_sample, step)
plt.plot(x, y, '-o', label='Upper bound from I-FGSM Attack')
plt.legend()
plt.savefig(result_folder + '/smoothmix_cifar_0.50_1530.pdf')
# plt.show()
""" Attacking consistency-imagenet-75260-0.50 """
model = 'consistency'
dataset = 'imagenet'
k = 75260
sigma = 0.5
eot_sample = 100
step = 200
plt.clf()
plt.style.use('seaborn')
plt.ylabel('Robust Accuracy', fontsize=14)
plt.xlabel('$r$', fontsize=14)
plt.title('ImageNet Consistency $\sigma=0.50$, Certified Accuracy vs. Empirical Upper Bound')
x, y = plot_original_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian', k, sigma, N, 0.001)
plt.plot(x, y, label='Neyman-Pearson Certification')
x, y = plot_improved_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian-th', k, sigma, ['x+'], N//2, 0.0005)
plt.plot(x, y, label='DSRS Certification')
x, y = plot_attacked_curve(f'{model}-{dataset}-{k}-{sigma:.2f}.pth', 'general-gaussian', k, sigma, eot_sample, step)
plt.plot(x, y, '-o', label='Upper bound from I-FGSM Attack')
plt.legend()
plt.savefig(result_folder + '/consistency_imagenet_0.50_75260.pdf')
# plt.show()
""" Attacking salman-imagenet-75260-0.50 """
model = 'salman'
dataset = 'imagenet'
k = 75260
sigma = 0.5
eot_sample = 100
step = 200
plt.clf()
plt.style.use('seaborn')
plt.ylabel('Robust Accuracy', fontsize=14)
plt.xlabel('$r$', fontsize=14)
plt.title('ImageNet Salman $\sigma=0.50$ Generalized Gaussian Smoothing\n Certified Accuracy vs. Empirical Upper Bound')
x, y = plot_original_curve(f'{model}-{dataset}-{sigma:.2f}.pth', 'general-gaussian', k, sigma, N, 0.001)
plt.plot(x, y, label='Neyman-Pearson Certification')
x, y = plot_improved_curve(f'{model}-{dataset}-{sigma:.2f}.pth', 'general-gaussian-th', k, sigma, ['x2'], N//2, 0.0005)
plt.plot(x, y, label='DSRS Certification')
x, y = plot_attacked_curve(f'{model}-{dataset}-{sigma:.2f}.pth', 'general-gaussian', k, sigma, eot_sample, step)
plt.plot(x, y, '-o', label='Upper bound from I-FGSM Attack')
plt.legend()
plt.savefig(result_folder + '/salman_imagenet_0.50_75260.pdf')
# plt.show()
""" Attacking salman-imagenet-75260-0.50 """
model = 'salman'
dataset = 'imagenet'
k = None
sigma = 0.5
eot_sample = 100
step = 200
plt.clf()
plt.style.use('seaborn')
plt.ylabel('Robust Accuracy', fontsize=14)
plt.xlabel('$r$', fontsize=14)
plt.title('ImageNet Salman $\sigma=0.50$ Standard Gaussian Smoothing\n Certified Accuracy vs. Empirical Upper Bound')
x, y = plot_original_curve(f'{model}-{dataset}-{sigma:.2f}.pth', 'gaussian', k, sigma, N, 0.001)
plt.plot(x, y, label='Neyman-Pearson Certification')
x, y = plot_attacked_curve(f'{model}-{dataset}-{sigma:.2f}.pth', 'gaussian', k, sigma, eot_sample, step)
plt.plot(x, y, '-o', label='Upper bound from I-FGSM Attack')
plt.legend()
plt.savefig(result_folder + '/salman_imagenet_0.50.pdf')
# plt.show()
print('Done!')