-
Notifications
You must be signed in to change notification settings - Fork 3
/
_computations-complete.qmd
54 lines (43 loc) · 1.22 KB
/
_computations-complete.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
title: "Quarto Computations"
format:
html:
code-fold: true
embed-resources: true
---
```{r}
#| label: load-packages
#| echo: false
library(ggplot2)
```
```{r}
library(palmerpenguins)
penguins
```
There are `r nrow(mpg)` observations in our data.
```{r}
#| echo: false
mean_cty <- round(mean(mpg$cty), 2)
mean_hwy <- round(mean(mpg$hwy), 2)
```
The average city mileage of the cars in our data is `r mean_cty` and the average highway mileage is `r mean_hwy`.
The plots in @fig-mpg show the relationship between city and highway mileage for 38 popular models of cars.
In @fig-mpg-1 the points are colored by the number of cylinders while in @fig-mpg-2 the points are colored by engine displacement.
```{r}
#| label: fig-mpg
#| fig-cap: "City and highway mileage for 38 popular models of cars."
#| fig-subcap:
#| - "Color by number of cylinders"
#| - "Color by engine displacement, in liters"
#| layout-ncol: 2
#| column: page
#| cache: true
ggplot(mpg, aes(x = hwy, y = cty, color = cyl)) +
geom_point(alpha = 0.5, size = 2) +
scale_color_viridis_c() +
theme_minimal()
ggplot(mpg, aes(x = hwy, y = cty, color = displ)) +
geom_point(alpha = 0.5, size = 2) +
scale_color_viridis_c(option = "E") +
theme_minimal()
```