-
Notifications
You must be signed in to change notification settings - Fork 1
/
builder.py
68 lines (51 loc) · 2.09 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import torch.nn as nn
import re
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": 'identity'}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(
nn.Linear(channels, channels),
nn.GELU(),
nn.Linear(channels, channels)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
def build_vision_projector(config, tower_config, delay_load=False, **kwargs):
modules = []
projector_type = getattr(config, 'mm_projector_type', 'linear')
if projector_type == 'linear':
modules.append(nn.Linear(config.mm_hidden_size, config.hidden_size))
modules = build_token_compressor(modules, config, tower_config)
return nn.Sequential(*modules)
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules.append(nn.Linear(config.mm_hidden_size, config.hidden_size))
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
modules = build_token_compressor(modules, config, tower_config)
return nn.Sequential(*modules)
if projector_type == 'identity':
return IdentityMap()
raise ValueError(f'Unknown projector type: {projector_type}')
def build_token_compressor(modules, config, tower_config):
token_compression_type = getattr(config, 'mm_vision_token_compression_type', None)
if token_compression_type is not None:
if token_compression_type == "quecc":
from .quecc import QueCC
token_compressor = QueCC(tower_config=tower_config, training_config=config)
token_compressor.requires_grad_(True)
modules.insert(0, token_compressor)
return modules