-
Notifications
You must be signed in to change notification settings - Fork 14
/
attack_cifar.py
154 lines (125 loc) · 5.36 KB
/
attack_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import sys
sys.path.append('./pytorch-cifar')
sys.path.append('./pytorch-cifar/models')
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from utils import progress_bar
from pgd import attack
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--reg', default=3000, type=float,
help='entropy regularization')
parser.add_argument('--p', default=2, type=float, help='p-wasserstein distance')
parser.add_argument('--alpha', default=0.1, type=float, help='PGD step size')
parser.add_argument('--norm', default='linfinity')
parser.add_argument('--ball', default='wasserstein')
parser.add_argument('--checkpoint')
args = parser.parse_args()
if args.checkpoint is None:
raise ValueError('Need checkpoint file to attack')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
mu = torch.Tensor((0.4914, 0.4822, 0.4465)).unsqueeze(-1).unsqueeze(-1).to(device)
std = torch.Tensor((0.2023, 0.1994, 0.2010)).unsqueeze(-1).unsqueeze(-1).to(device)
unnormalize = lambda x: x*std + mu
normalize = lambda x: (x-mu)/std
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model architecture is from pytorch-cifar submodule
print('==> Building model..')
net = ResNet18()
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
regularization = args.reg
checkpoint_name = './checkpoints/{}'.format(args.checkpoint)
save_name = './epsilons/{}_reg_{}_p_{}_alpha_{}_norm_{}_ball_{}.pth'.format(
args.checkpoint, regularization, args.p,
args.alpha, args.norm, args.ball)
# Load checkpoint.
print('==> Resuming from checkpoint..')
checkpoint = torch.load(checkpoint_name)
net.load_state_dict(checkpoint['net'])
# freeze parameters
for p in net.parameters():
p.requires_grad = False
criterion = nn.CrossEntropyLoss()
print('==> regularization set to {}'.format(regularization))
print('==> p set to {}'.format(args.p))
def test():
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
acc = 100.*correct/total
def test_attack():
net.eval()
test_loss = 0
correct = 0
total = 0
all_epsilons = []
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
inputs_pgd, _, epsilons = attack(torch.clamp(unnormalize(inputs),min=0),
targets, net,
normalize=normalize,
regularization=regularization,
p=args.p,
alpha=args.alpha,
norm = args.norm,
ball = args.ball,
epsilon = 0.001,
epsilon_factor=1.17,
maxiters=400)
outputs_pgd = net(normalize(inputs_pgd))
loss = criterion(outputs_pgd, targets)
test_loss += loss.item()
_, predicted = outputs_pgd.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
epsilons[predicted == targets] = -1
all_epsilons.append(epsilons)
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d) | Avg epsilon: %.3f'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total, torch.cat(all_epsilons).float().mean().item()))
acc = 100.*correct/total
torch.save((acc, torch.cat(all_epsilons)), save_name)
print('==> Evaluating model..')
test()
print('==> Attacking model..')
test_attack()