-
Notifications
You must be signed in to change notification settings - Fork 419
/
test.py
139 lines (111 loc) · 4.93 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import cv2
import numpy as np
import pickle
import argparse
from darknet import Darknet19
import utils.yolo as yolo_utils
import utils.network as net_utils
from utils.timer import Timer
from datasets.pascal_voc import VOCDataset
import cfgs.config as cfg
parser = argparse.ArgumentParser(description='PyTorch Yolo')
parser.add_argument('--image_size_index', type=int, default=0,
metavar='image_size_index',
help='setting images size index 0:320, 1:352, 2:384, 3:416, 4:448, 5:480, 6:512, 7:544, 8:576')
args = parser.parse_args()
# hyper-parameters
# ------------
imdb_name = cfg.imdb_test
# trained_model = cfg.trained_model
trained_model = os.path.join(cfg.train_output_dir,
'darknet19_voc07trainval_exp3_73.h5')
output_dir = cfg.test_output_dir
max_per_image = 300
thresh = 0.01
vis = False
# ------------
def test_net(net, imdb, max_per_image=300, thresh=0.5, vis=False):
num_images = imdb.num_images
# all detections are collected into:
# all_boxes[cls][image] = N x 5 array of detections in
# (x1, y1, x2, y2, score)
all_boxes = [[[] for _ in range(num_images)]
for _ in range(imdb.num_classes)]
# timers
_t = {'im_detect': Timer(), 'misc': Timer()}
det_file = os.path.join(output_dir, 'detections.pkl')
size_index = args.image_size_index
for i in range(num_images):
batch = imdb.next_batch(size_index=size_index)
ori_im = batch['origin_im'][0]
im_data = net_utils.np_to_variable(batch['images'], is_cuda=True,
volatile=True).permute(0, 3, 1, 2)
_t['im_detect'].tic()
bbox_pred, iou_pred, prob_pred = net(im_data)
# to numpy
bbox_pred = bbox_pred.data.cpu().numpy()
iou_pred = iou_pred.data.cpu().numpy()
prob_pred = prob_pred.data.cpu().numpy()
bboxes, scores, cls_inds = yolo_utils.postprocess(bbox_pred,
iou_pred,
prob_pred,
ori_im.shape,
cfg,
thresh,
size_index
)
detect_time = _t['im_detect'].toc()
_t['misc'].tic()
for j in range(imdb.num_classes):
inds = np.where(cls_inds == j)[0]
if len(inds) == 0:
all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
continue
c_bboxes = bboxes[inds]
c_scores = scores[inds]
c_dets = np.hstack((c_bboxes,
c_scores[:, np.newaxis])).astype(np.float32,
copy=False)
all_boxes[j][i] = c_dets
# Limit to max_per_image detections *over all classes*
if max_per_image > 0:
image_scores = np.hstack([all_boxes[j][i][:, -1]
for j in range(imdb.num_classes)])
if len(image_scores) > max_per_image:
image_thresh = np.sort(image_scores)[-max_per_image]
for j in range(1, imdb.num_classes):
keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
all_boxes[j][i] = all_boxes[j][i][keep, :]
nms_time = _t['misc'].toc()
if i % 20 == 0:
print('im_detect: {:d}/{:d} {:.3f}s {:.3f}s'.format(i + 1, num_images, detect_time, nms_time)) # noqa
_t['im_detect'].clear()
_t['misc'].clear()
if vis:
im2show = yolo_utils.draw_detection(ori_im,
bboxes,
scores,
cls_inds,
cfg,
thr=0.1)
if im2show.shape[0] > 1100:
im2show = cv2.resize(im2show,
(int(1000. * float(im2show.shape[1]) / im2show.shape[0]), 1000)) # noqa
cv2.imshow('test', im2show)
cv2.waitKey(0)
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
print('Evaluating detections')
imdb.evaluate_detections(all_boxes, output_dir)
if __name__ == '__main__':
# data loader
imdb = VOCDataset(imdb_name, cfg.DATA_DIR, cfg.batch_size,
yolo_utils.preprocess_test,
processes=1, shuffle=False, dst_size=cfg.multi_scale_inp_size)
net = Darknet19()
net_utils.load_net(trained_model, net)
net.cuda()
net.eval()
test_net(net, imdb, max_per_image, thresh, vis)
imdb.close()