-
Notifications
You must be signed in to change notification settings - Fork 1
/
inception_resnet_v1.py
219 lines (198 loc) · 8.94 KB
/
inception_resnet_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# -*- coding: utf-8 -*-
"""Inception-ResNet V1 model for Keras.
# Reference
http://arxiv.org/abs/1602.07261
https://github.com/davidsandberg/facenet/blob/master/src/models/inception_resnet_v1.py
https://github.com/myutwo150/keras-inception-resnet-v2/blob/master/inception_resnet_v2.py
"""
from functools import partial
from keras.models import Model
from keras.layers import Activation
from keras.layers import BatchNormalization
from keras.layers import Concatenate
from keras.layers import Conv2D
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import GlobalAveragePooling2D
from keras.layers import Input
from keras.layers import Lambda
from keras.layers import MaxPooling2D
from keras.layers import add
from keras import backend as K
def scaling(x, scale):
return x * scale
def conv2d_bn(x,
filters,
kernel_size,
strides=1,
padding='same',
activation='relu',
use_bias=False,
name=None):
x = Conv2D(filters,
kernel_size,
strides=strides,
padding=padding,
use_bias=use_bias,
name=name)(x)
if not use_bias:
bn_axis = 1 if K.image_data_format() == 'channels_first' else 3
bn_name = _generate_layer_name('BatchNorm', prefix=name)
x = BatchNormalization(axis=bn_axis, momentum=0.995, epsilon=0.001,
scale=False, name=bn_name)(x)
if activation is not None:
ac_name = _generate_layer_name('Activation', prefix=name)
x = Activation(activation, name=ac_name)(x)
return x
def _generate_layer_name(name, branch_idx=None, prefix=None):
if prefix is None:
return None
if branch_idx is None:
return '_'.join((prefix, name))
return '_'.join((prefix, 'Branch', str(branch_idx), name))
def _inception_resnet_block(x, scale, block_type, block_idx, activation='relu'):
channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
if block_idx is None:
prefix = None
else:
prefix = '_'.join((block_type, str(block_idx)))
name_fmt = partial(_generate_layer_name, prefix=prefix)
if block_type == 'Block35':
branch_0 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 32, 3, name=name_fmt('Conv2d_0b_3x3', 1))
branch_2 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 2))
branch_2 = conv2d_bn(branch_2, 32, 3, name=name_fmt('Conv2d_0b_3x3', 2))
branch_2 = conv2d_bn(branch_2, 32, 3, name=name_fmt('Conv2d_0c_3x3', 2))
branches = [branch_0, branch_1, branch_2]
elif block_type == 'Block17':
branch_0 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 128, [1, 7], name=name_fmt('Conv2d_0b_1x7', 1))
branch_1 = conv2d_bn(branch_1, 128, [7, 1], name=name_fmt('Conv2d_0c_7x1', 1))
branches = [branch_0, branch_1]
elif block_type == 'Block8':
branch_0 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 192, [1, 3], name=name_fmt('Conv2d_0b_1x3', 1))
branch_1 = conv2d_bn(branch_1, 192, [3, 1], name=name_fmt('Conv2d_0c_3x1', 1))
branches = [branch_0, branch_1]
else:
raise ValueError('Unknown Inception-ResNet block type. '
'Expects "Block35", "Block17" or "Block8", '
'but got: ' + str(block_type))
mixed = Concatenate(axis=channel_axis, name=name_fmt('Concatenate'))(branches)
up = conv2d_bn(mixed,
K.int_shape(x)[channel_axis],
1,
activation=None,
use_bias=True,
name=name_fmt('Conv2d_1x1'))
up = Lambda(scaling,
output_shape=K.int_shape(up)[1:],
arguments={'scale': scale})(up)
x = add([x, up])
if activation is not None:
x = Activation(activation, name=name_fmt('Activation'))(x)
return x
def InceptionResNetV1(input_shape=(160, 160, 3),
classes=128,
dropout_keep_prob=0.8,
weights_path=None):
inputs = Input(shape=input_shape)
x = conv2d_bn(inputs, 32, 3, strides=2, padding='valid', name='Conv2d_1a_3x3')
x = conv2d_bn(x, 32, 3, padding='valid', name='Conv2d_2a_3x3')
x = conv2d_bn(x, 64, 3, name='Conv2d_2b_3x3')
x = MaxPooling2D(3, strides=2, name='MaxPool_3a_3x3')(x)
x = conv2d_bn(x, 80, 1, padding='valid', name='Conv2d_3b_1x1')
x = conv2d_bn(x, 192, 3, padding='valid', name='Conv2d_4a_3x3')
x = conv2d_bn(x, 256, 3, strides=2, padding='valid', name='Conv2d_4b_3x3')
# 5x Block35 (Inception-ResNet-A block):
for block_idx in range(1, 6):
x = _inception_resnet_block(x,
scale=0.17,
block_type='Block35',
block_idx=block_idx)
# Mixed 6a (Reduction-A block):
channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
name_fmt = partial(_generate_layer_name, prefix='Mixed_6a')
branch_0 = conv2d_bn(x,
384,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 0))
branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 192, 3, name=name_fmt('Conv2d_0b_3x3', 1))
branch_1 = conv2d_bn(branch_1,
256,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 1))
branch_pool = MaxPooling2D(3,
strides=2,
padding='valid',
name=name_fmt('MaxPool_1a_3x3', 2))(x)
branches = [branch_0, branch_1, branch_pool]
x = Concatenate(axis=channel_axis, name='Mixed_6a')(branches)
# 10x Block17 (Inception-ResNet-B block):
for block_idx in range(1, 11):
x = _inception_resnet_block(x,
scale=0.1,
block_type='Block17',
block_idx=block_idx)
# Mixed 7a (Reduction-B block): 8 x 8 x 2080
name_fmt = partial(_generate_layer_name, prefix='Mixed_7a')
branch_0 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 0))
branch_0 = conv2d_bn(branch_0,
384,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 0))
branch_1 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1,
256,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 1))
branch_2 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 2))
branch_2 = conv2d_bn(branch_2, 256, 3, name=name_fmt('Conv2d_0b_3x3', 2))
branch_2 = conv2d_bn(branch_2,
256,
3,
strides=2,
padding='valid',
name=name_fmt('Conv2d_1a_3x3', 2))
branch_pool = MaxPooling2D(3,
strides=2,
padding='valid',
name=name_fmt('MaxPool_1a_3x3', 3))(x)
branches = [branch_0, branch_1, branch_2, branch_pool]
x = Concatenate(axis=channel_axis, name='Mixed_7a')(branches)
# 5x Block8 (Inception-ResNet-C block):
for block_idx in range(1, 6):
x = _inception_resnet_block(x,
scale=0.2,
block_type='Block8',
block_idx=block_idx)
x = _inception_resnet_block(x,
scale=1.,
activation=None,
block_type='Block8',
block_idx=6)
# Classification block
x = GlobalAveragePooling2D(name='AvgPool')(x)
x = Dropout(1.0 - dropout_keep_prob, name='Dropout')(x)
# Bottleneck
x = Dense(classes, use_bias=False, name='Bottleneck')(x)
bn_name = _generate_layer_name('BatchNorm', prefix='Bottleneck')
x = BatchNormalization(momentum=0.995, epsilon=0.001, scale=False,
name=bn_name)(x)
# Create model
model = Model(inputs, x, name='inception_resnet_v1')
if weights_path is not None:
model.load_weights(weights_path)
return model