-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch4-CFopa_分布电容影响稳定性.nb
1376 lines (1362 loc) · 71.7 KB
/
ch4-CFopa_分布电容影响稳定性.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 73241, 1366]
NotebookOptionsPosition[ 72691, 1348]
NotebookOutlinePosition[ 73052, 1364]
CellTagsIndexPosition[ 73009, 1361]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzs3UsOLEeW5nfqBWgoLkHgFjjQVKOEpi0InAnohkoNTkpAtQBB3AF3cHfA
FXAF3AA3wLkG3ANVHwsn6+NJe7v5IyL+P8DzMu+Nh4e7ubnZMfNj/+N/+r/+
w//5X3/11Vf/5b//1//5D//x//mf/+Vf/uP/+7/+D//6f/63f/4v3//nf/6n
/+N/+ef/+5/+8z/9y//0n/6bf/3L//2/+uqr/++/++qr//Zf//sPAAA2+u23
3/7889dff/3j+++//+Nvf/vbn3/+8ssvf3/NN99884duQT/++ONduwkAL+/3
33//c5Off/75j+++++7POveHH374e12sP1XfavN6GHg3UeZ1Tega0LWga+Kn
n376+2vUHtG1oH9r0XviurmyrRJtp2+//fay78ReUQ7ly5cvf5Y1bfrvqK+9
fF1p5z1Dv0fl1H8XAAAAgPupT/n111832/PqexIrAoBjFA9RbESbx4MyxU7u
iAMBV4p4p8p7i9oozA/AWdTGVRlT3LtF/z4yTrQT9wwAAADg/UV7Xv2S1jwa
zdHR6zSHHgCwZjS+o1iMXqfxU+AdjY77a75wvK4VnwRWjYz/qI0c5dCf7Tgb
9wwAAADg/Y20+9UnYe4aABw3UpcqVsnzSnh3o/N91T65es4yPsfoOJHq7JH5
LLtxzwAAAADeX/SPW/PiI4avuTnkqgSAdVGf1uY4qo6NtT6YB4l35nHR2rx4
f8ZPrwfOEDHw2rx4L6tXzp0X7hkAAADA+4u8ljE3Tf0Ozb3Rpn5xtPn1b8Tm
AeCYyHMcsRTl7og6V3nE4t/038C7i3Vf1dZQmyOuBbVFYt68/o3YPM4U6yCo
/lXdG+VQ9XOUUf3b1bF54Z4BAAAAfA619/XsrPrDsWnOjv6OfjEA7KOxTsV5
FE/xOlexF8UoybGNT6I2htoaanP49aC/U9sEuILqXdW/qoe9HKqeVn195xwV
7hkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCT/fzzz3989913f267ffPNN398//33
f/z666/bPxsAAAAAAAAAgFf0yy+//PHtt9/+8dVXX/25KY6+02+//fZnzD8+
/29/+9uffwcAAAAAAAAAwKf64Ycf/h43Vwz9zLi5PluxeX3X119//cdPP/10
2ncBAAAAAAAAADAr4uWr2++//z70PZonH++5Mlb+448/3vK9AAAAAAAAAADU
KD/7kdi85sOP8Hnzd8TIv3z5QoweAAAAAAAAAPAYilV7vF1zzWs5ZzRP3vPG
679HaB1Y//y7RE565bph3VgAAAAAAAAAwJ18Xnsvdu75aUZj3Irp67V6zzff
fLNrt5do3CH2RXnpAQAAAAAAAAC4S6yf2otX53n2ozlinpb73ccjfvnll7t3
BwAAAAAAAADwoWI+eStW7fPOtWke/ezn688n0G+J38EcegAAAAAAAADAHSJW
3YtTe8555ahRzpoRPud+JqZ/Nv89tVz7AAAAAAAAAADcyfPBaJtZVzXWY9Wm
NWJX6b36LI0N+L7o/2tsQfs4s1+ec+fLly/L+wUAAAAAAAAAwBmU88bj4bOx
bM+JszJPXfP0Iz/+yDbKfxc5bgAAAAAAAAAAT6LYuMfXNX99huazx3tXc8/7
/Hv9t8+R13/7v8/E2T0H/UxcHwAAAAAAAACAs/m8dcXXR3POB+WkOTJH3WPo
ymPT20/luJmxmrMHAAAAAAAAAICzKI+Nx6+VD2aW53hfic97DppW7D3WoNWf
MzyX/crvAwAAAAAAAABgJ89Lo01x9hUen5+d2y4en//222+X9qHFnw+Yje0D
AAAAAAAAALCTctj4vPIjcXGPz6/E+HOO+JUYf4vH51fHIAAAAAAAAAAA2MHX
W1XOecXIVx2Nz4ti8h6jV0z9yD454vMAAAAAAAAAgCeIPO6xaX3XI3bE5+X7
77//y37tiqcTnwcAAAAAAAAA3E055zVffmcuGY/PK8Z+hMYOfP9iLr3y8awi
/zwAAAAAAAAA4G7KM+8554/EvYPH5xULP0r75Pl3jubH93i/1qIFAAAAAAAA
AOBKnuNdMWvNpd9B+XF2xudDzsOzOvfdP2PXbwYAAAAAAAAAYITH0LV9+fKl
+frIBT8y31wxb//snTwn/UrunDP3DQAAAAAAAACAFuWL8Rwvyh3T8ttvv03H
s/3z9f4RkRenReMDR+bmnzW3HwAAAAAAAACAHl8f9ZtvvunmnI/Xz+R893zx
o3lo4ntac/Q9vt4bVyjxnD4aDwAAAAAAAAAA4Aq+dutI/nXlvVnJJ+O54kfj
6DHnvvX6lbi/03jE7Lx+AAAAAAAAAACO8Nwwvfnjil37XPORHPWZ57jpzdHX
v/t3KQ7vYwf6b4/Nz8zl988gtw0AAAAAAAAA4EqKf/vc8ZWtN9c+87n6vdh+
Xre1tSk234v3l/jasitz7wEAAAAAAAAAmJXz2qxss3wd2pE89/p3xc0VR/cc
+dr0OZo/vxpX9zVumTsPAAAAAADwnrR2oWJIK+sW9ii+pbjV7BxWALiLr+eq
fDl38Xg/dSgAAAAAAMB7UV5n5VxYWUdxhOZ+eu5lxZpY2xDAK7g7r4zn0Sev
DQAAAAAAwHvx2I9i6GfGzfXZMQ9U+R6INQF4BXfF6InNAwAAAAAA7KUYy1Py
CN8Vc/Jc0sScALwCxjIBAAAAAABem683eHd8/u55mV++fCFGD+ClKBeY1tI4
KxeY7hHkAgMAAAAAADiHzxu/Mz7vax5qn+4ScSiNWbDmIYBXEWtp747PS6yl
rbEAAAAAAAAA7KE5kB6bj+1qPodfcaA76ZjEvtyd6wcAAAAAAAAA8J5irnie
Q3+1p+V+9zw7zBcFAAAAAAAAAOykuLPPV78zPh/z1fXnE/hzBcyhBwAAAAAA
AADs9O233/5lvrrH55Vv5ir6/rPWNTwijo821kIEAAAAAAAAAOwQMXHFoIPH
56/M6RI5drRpfcMVGk/Qb9Jc95iLH5t+o/7+y5cvU3F2z7mj9wIAAAAAAAAA
cISvxepx+Lvi8x5PX5mn/uuvv/6Zo6e0zm3eZnLVRP4fctwAAAAAAAAAAHaI
eeE55nxHfF6x9fjOldzzGmvw2Lx+m8f4NR/f89To30d5Dvo7cvIDAAAAAAAA
AN6Hx5wVG3eK1x/NMzNL33NkjvpI7np/XmD2d3l8Ph+vFX6Md29XPvMAAAAA
AAAAAJijGHYtlu2x45l55kd4jveV+Ly/vxV7j989mz/H5+bviH8TnwcAAAAA
AACAz+P51Etx6rvj8z/88MPl7+/xY6K5+gAAAAAAAAAAzIpYcy32fnd8fuU7
Pb/NGXl57jgmAAAAAAAAAID3EXFs5WFXPvaS77777tS56CVH4/Pi67/Gvtd+
46xPiM+flW+HjY2NjY2N7dgGAAAAAHh9ilVHHvVWjPloLvgVO+Lz+n05Rq9x
iB1z6YnPs7GxsbGxsd21AQAAAABen8fAR7eR+Lxy2Cunfd5m5q77vpXWrJ2h
efP5dxx9DoD88wAAAAAAAACAFYqhay75GfF5xavzZ2ue/mp8fsec/V9//bWY
72aV/z6NPQAAAAAAAAAAMEJz0hVbbuWdDx4rV5x9hGLWR+LrykGzMz4f4nfH
pnGKFf4Ziv0f5fPxd2+MHwAAAAAAAADAM3js/MuXL93X5zw4Z3xHppj3WXlW
I+f+am6aM/aN+DwAAAAAAAAAvL+IBa/MhR+NRysmf3R+ueeQGZ3nrt/Wm29/
dO3Zs+b2AwAAAAAAAADel+aLz84dX4nPex6ZVd999930vo58p68XuzK339+/
Et8HgE+mMU7V70fX/gbOpjaCyirrwAMAAAAAdlCeeZ+TPrpeq88XH82XEjlk
jswv97EE9Y97PO9MLe6u3+z5bVbyzx99PwB8ItXRnsuL+DyeLq+/Q744AAAA
AMARPh99Zl67zxcfmXOumPWu+eUz4wl5HEHf7fFz/fu3337793/X75rlYwDk
tgH20LWt62l0zBCvx8dbVQ8T58SrUDvCx5VW2jUq74xHAQAAAMBn83wzM7ld
1Kf0GHnMIWvNG/c4zNEYjM9d6+2v57zvbav9ZD+OPO8OHKeYfIybcU29J78n
qA5lHAavyO//s22IaMsQowcAAACAz+T5WPLWyhuT583nrRaj9/cdjcN4Th79
jt7naZ8iX6zPlY/3q2+8OmbgzwUwdx44zmPzxK3ek8fmqTfx6jxGP7t+TczB
p64DAAAAAJwt4m36cwfPW7OSk2YXf75deW4AHBPX1Mj6Eng9GtOcGV8FXoGP
/c+0BRiPBAAAAABcQf3PM9b+uzuvjD8TQA4O4Li4pojbvi8f09Q4K/AOfB2a
2XkIem+MWdGWAAAAAACcQbljenFsxeL0utmY3F0xemLzwF7+TAzrhL4nvxeQ
1wbv5kh7JNbKUZyeZ/EAAAAAALv5eq61fmfkI26tMVvjsXLlxFj5jFH67Jj/
qX40sXngOM95cme+qlemelZ108im16ruuvoZhTPmzus3qMxQbtbpvjlSbvQ6
lZ2nPffga8z4/ipeHvt7RVn39Wj0DNCsuD525QEEAAAAACB4PLtGfdmV/mzQ
vExf83Z3Hlf17dX397mfZ44DAJ8k6gjy2qzT2KfXUSOb6uTZ9SyP7N+R2GWJ
4q4xrsN8/HU6jnnt9N6mc3j3cy76fh/z6W1XzEv34zg7fu/xfY0rAAAAAACw
g+eer8VP4rnuHTF1xRkUozpjnTXFI/S5d8ckgHfieW14HuU4j0cqVqj6yjfF
/XwsU9sVMXrP/XF0rnseLyU+f5znHor7sZcbXac6bzEecve66P7cXJx/lePY
39K+XjH2F88Crq5xPfK8IQAAAAAAozQXzGMoub8ffWjWCgQ+k+JlESsmvrqH
xyNbc3BzfPvs54E8VnpkjFMx2Bx3vbP86B4W+VReWY7P186RX7M7n4WY4WM9
rTxz/puu2k+fA78yJqDX80wIAAAAAGAX9ZlH8yFrI68F8Fl8rijPpRyXY4Ot
Mc/82jPn0HuctJXnrCWv/ZHzsdwVy/T8Kq/M53334sr5tVfO8/bY/Mh3Rzk5
45m63neuPhNEvQgAAAAAAICz+TxR1kPcI8+B7o15ehzxzPilxxtX4uj+fv13
/C7ff+Lzx/gx7l2PnrfuyrxUngtr9Hsjnn/VOgv+navXldeNdzyfAAAAAAAA
gPfn8UDyzu/hx3Qkruex5TPj2/49K+teKoeMYsZ5rvRV+9/yLvF5/x0jMeXR
PEq7eMx6Jre7nrvQuNWVz+fFmjpH4uvUjwAAAAAAADgL80PP4THWkfilzz8/
umZry9G51rXY6qfH53VcFAtWPN1zxen/K747s6bLTK6jPH/+irVjPF59xXoJ
R8w+x1Li+ad4vggAAAAAAAA7+fzSK+befgqfXzwbYz0r/0fOc78zn/Ynx+dz
vLq2jeT713MJMzndc56Zs/PP57nzV+aSX5GvrdUy72s4k4ceAAAAAAAAu2jO
/CvMg30ls3HwvMbnWedhx1zimk+Nz+c8Rhpb0XHWpv/262tk7nUuCz2eX/2K
5198PO9V6owdY18+DjKazwcAAAAAAABo8XjtXTHVdzQTY1WM3GO4Z85HzrHV
nT4xPu9zszWnvDTe4ed35Nx6vL13HPNc+ytyo3seplfJ9eLX15FnhPy5gVcY
lwAAAAAAAMCzeSyQdQ/3Uf74kRirYrd5/vOZa2fmPCw7fWJ83se3WrH3GBcZ
mbvt8e9WLFnxYX/tFXO683MhZ+Vh2m12vd0av1Zf5bcDAAAAAADgmXJe5jPj
wp/G44GltV51rDUeknOfnJ073OPzu+c+f3p8vhUf1/nWa0euMb8mS2u9Kkau
8+hzufXdV1y/+bmQs8vrLrvKpue4YS1tAAAAAAAAHOGxtlfJU/EqPIapOJ5i
grF5TN5j+FfEVz0+vzuG/onx+ZxfphRPn5HXB9B16WXHY/KRU+fKedw+f3xk
rdun2Fk2/Ry8yvgEAAAAAAAAnkdzbsnVsF+OsdY2xfkUl78yj/Wrxud1nDxO
Xds8djryem1HY6z+u4/mN8/5h2pbrEN79TMvnk/nldar2Fk2vd4sPRsDAAAA
AAAA9OTcNswD3Sevwap4fWw5p83VOf9fNT6fY+A7N52XI3Qtedw64ucrn+ux
X32mlx3PaaM/77hmd41DXG1n2fTnjshxAwAAAAAAgBUeY3qlPBWvwGOspVhg
zomyGmdVXFgx0hwbbsX8XzU+r2Pksera5sdi5PWjOeF78jq/qzFsn/9feq+P
/Zy9lnCWy+0rPXOzs2zmNXIZ2wQAAAAAAMAsjyW21rXEPJ8fX4vPegx/5fgr
JqhYruLRkR8nYu+teCHrw55L8f68voCutRE57lubf+8x/Ctj5Dlv09HnDq60
u2z6OX6lcQoAAAAAAAA8w10xvneX8wbV1gvNOXBmvyPO32yMNOc334n4/L8p
zaUfOU8qK/6e2tz43vMZZ3mX+PzoeEmLn99XysMPAAAAAACA++3Kr4J/NBpj
zbHOmXMQscGV3NdHxgV6iM/X92VkHVG9ZuTZBh9juTI31SvH50eeaZnh+cGe
UNYAAAAAAADwOs6M0X46j5324uejOeOdz50fiflmOca6M3/5J8Xndb56v9HH
akaOx+gc73wOI7/R2UafDclUTvXb7hwH3J03P49xvtJYBQAAAAAAAO51V36M
TzCTR8PXMu29VvE/xTlzbvPZedSjOc5XfFJ8Pq6hVszZ4+gjx2N0vCbHyUfH
duK9GkPycqRyqJi1Nv196zf5+0bGh3yM4ux9a33uGWXeP3PHnHwAAAAAAAB8
htkYG8bNxOw8h/Vorhp/9mF17vvKHOgRnxSfj2uodY49X01vzvZs7hi/hkfz
qetcaxxHm2L6UX7y8zSt+fg5t06rDMYaxiPlYce+1Zz1zIiXNdbYBgAAAAAA
wIg8l5S1YffJued7se+cw3pkXu+R3PPB44q75v3mctWL3Z7lqvh87xryuPLI
sfBY/kgM2cd2Rj4/yqZeW5qDPjpO5PmVYn57jpnrNfr9/rrWOOCufavx6+zI
dZPlcwAAAAAAAAD0vPIaj0+mmKTnqxl5NiHnmtH7e3HW+I4j83V9DvTqPHft
u8qOtsg9knPu6O/0b/G6K+L1V8Tn8zUU8Vl9tzaPS9dizs7nma+O7bTm0HtM
vZYLZ2YeeGl/VS712/M10Ps9u/etxMc+Rp81GOHX0c55+QAAAAAAAHhfxJT2
K8UrPUbdis/meKY+pxXX3zHv3ePLq/N+S7+1t12R8+aq+fOKNyvW21oPQP/e
y8eS4+w55l2Tn1eIslaKcfeeufC1TkfLlX6XPrdW7uP7dD70mbV65ox9y/wa
m8nV38NYJwAAAAAAAGZ5ToazY5ifwueSl7bWGEjpvbWYrscDj8YCPa66suZm
6/fWtpXvmXVVfD5b/Z16beuYzb63VNbiXNfi2z5GsFKu8n7M/P6z9y0/o7Jz
PDJ/NmvEAgAAAAAAoOcJa3hizY61YYOP07zTGsEeK8bYmI6XhXfbN4/vn7GG
62iOIQAAAAAA8Dk8htfb9Ny/YhY7n/l/V+9yXK/ON6JjoDmyzC09TmWqlQtk
hucN2blmJp7F81mVxnQ8/3srn86r7puPR/Zy+q/w/EaMdwIAAAAAgKC5iK28
wLWY8hX5J17Zqx/XnLP6zJi5cj94bIz4/HERC9w1D/js2CXu5zHwkhjzuWP+
99n75vlnzhqD8muIcS4AAAAAAOA8blBaA1IxY8VHPN6sWDLrhba98nHN6xme
FTPXswZ5HIP4/DE+trLrWHp5YO7ve/IYeB4nzOu76rp9p33z3DhnPcvkYwhX
5wcCAAAAAADPNppnPMdsr47RzLpr/cfS97/acc37tHvOtGJsGosoPUdwV3z+
XeLPO9eGdV6eydn+fjz/esxB17zyiH+rDrjr/J+5b56/6cy8PT7GoK22tjMA
AAAAAPg8PvewFxv1mOrT45h3x+df+bjmWNKueJzmdvtnK76W55USnz+ml6t7
leKJUaaVn+MJz3lgH8/h7pv+TjFsj4G/07553XtmfrGz6lQAAAAAAPDacp7x
XszAYwylnC1Pcmd8/tWP6xmxJB2TyIuuc+PzR4nP77NzbdjM5zHvym2P5/Dn
WlQPafwsrtMffvjh9DnmV++b57U5+7mlvG448XkAAAAAACA+73Bkvm2O2z7Z
nfH5Vz+uZ+ViUDysFAcjPr/P7rVhs1KuEbwuxb1VZnrx4ihXioVf5cx989j8
FeX4iXnMAAAAAADA/TwOOzLf1mMaT49j3hmff/Xj6sfuiuNHfH4PjaPE7zhr
nUvxGL3mLJ+ZFwTn8ZxFrXix52i/at73Wfumz/X67ar65qo1twEAAAAAwGvx
OMXIHMKYp/gKc2fvjM+/+nElPv+aIm6uuObZ+eEVF50t53gWH2dpifHDM3Im
1Zyxb3nc9MocM8TnAQAAAABAia+513vePscXnp4/9874/KsfV+LzrynO25XH
ULmclEuH+Pzr8TxctfEcr5/0+lfeN9XFKqtnPltSQ3weAAAAAABknhdAWy9H
RazN9yoxzLvi8+9wXInPv56YG3zX+p14TVH/KG7tdZXywKhMxVjjHTHtJ+/b
LM89pe3KPP4AAAAAAOCZPH9AKwaruYuKj8TrrsidscNd8fl3OK7E519HlCHF
MpmTi1mqczSvXOXen/uJa0Fx5F3rQ7/Tvq3I+w8AAAAAAD6bYhu1WIHiInoe
X6/xuIhigK8SD7krPv8Ox5X4PADsRXweAAAAAAA4z6vS2xRLfrW5uXfF59/h
uBKfB4C9iM8DAAAAAAA3GkNWfoGn5F2RHDveue1Ym/VVj6t7p/j8WWVl9ric
uR9sbGznbzvrIuLzAAAAAAB8NsWhPVbga+8pZuw5WjQf/Elx5CfH51/5uDri
8/vjdXfHFtnY2I5tO+si4vMAAAAAAHw2xUAjTqAcKyUeo1VceZXWS83x3u+/
/37580bdkd/myuN6pneKz8/uA3EzAGcgPg8AAAAAAMJ3333XjRMoru7xhNm5
3nq95ogrTh3z0mN+uXK7nO2O+PyZx9Vj/7Xtm2+++XPs4+hzAMTnAWAv4vMA
AAAAACAojtuLh/72229/iSfMxnwjxntXvPWO+PzZx9Vj+3nuvT7XY/h67Sri
8wCwT673n7guOAAAAAAAuMZMfFhz31fiCR5H1vfd4er4/BXH1fPb1+Lvmj+/
+sxDID6PT6TrReVvZNP1t2M9aXyGvDYJ8XkAAAAAAD7Xzz//PJxfxeO0yt0y
Kt6n/DZ3uTo+f8Vx9XEPX3vW+Rz61fgh8Xl8Io2x+fjWyKaxNmKt6CE+DwAA
AAAAgvKiRIygFz8fWe80RH4VfWYtllWLKZ/h6vj8Wce19h0jn716vD2PPvF5
fBq/zrQpZu9z5/X/PZcV5QY9xOcBAAAAAEDw+HkvppTnhI/Ee/WaeL3ef5er
4/NnH1f/jtbnx+9W/HBVXov2zHEVPWfwhLgVcVaEXP5rz8JonesnlF08X47P
H1kfBAAAAAAAvK6cIz2vMZrl2KnmjfY8Ife8XBmfv+K4+ntqn+/H/sjYSI5P
nplnO8c4Na6wmjf/COLzCD5/vjfO5fXMkTExvLdcz7F2AQAAAAAAn0cx5Jx7
RvGk3tzo/B7FGVoitjWTt+UMV8XnrzquPuc+z71UrCfyZuu7j8Z+zoolKe6u
z448IbVcSCo7nlPkinEe4vMIXnf0xs58TKw11x6f7coxTwAAAAAA8Dx5vnbe
WnkZcqy2F3uP2Nbdcc4r4vNXHtcc3yltI/PwR5yViyF/7uh2Rd4Q4vMIug5H
x81ymSbuipLRnEkAAAAAAABHXRlTbbk6//zZannlFefR3PqIKfZy64z4xLUM
ic9DfP2MkXh7vlbuzOmF5/L70bvckwAAAAAAwPM8ZW3Yd9SbI9/Kf3Pk+3bF
/IFXkPPV9OR50UCJx+eV1wsAAAAAAOAMnrOFeaT7+BzdVr6NnXluPMcHc8rx
KXxt2JFy72sofPfddxfsIV4R9SkAAAAAALhCrFF699qw78bHPWr5NvzZhR3z
3ZnviU/k8fbedUTueYzieSQAAAAAAHCFiG0xP3Avzcvt5c/wvBw78tv4PGLy
duBTeJlv5ejSug9aC2L32sx4P3lNg96awwAAAAAAAKs+aT3RK0VuhNq4h8cK
d8119zn75CvCJxhd61XjXzlfia5BoMTXBuE5CwAAAAAAcBaPbbE27D6+/mTO
i6B5mYqje/x+V5yQ3B34NHlMSteeb7q+PC7PWCRGsIYwAAAAAAC4AmvD7pfj
OnlTrFAxQ8Xtz4ifE4fEJ/E8Ur3rTvlsqOcwwsuVnnMCAAAAAAA4A2vDvh9f
K5P82nh3nk9e414+d55c81hFPQoAAAAAAK4Q8SviD+8jxlx25rUHnkhz4Xtr
w3qcledJMIq1YQEAAAAAwNk8tkWe8vehdTDJm4xPkNfwLK3jkF9Dfhv05HU8
tGYIAAAAAADAbpEnXTkh8D7ynGLGXvCufK2HVo5w5kJjhq/LQu43AAAAAABw
hpgfqNgD80nfj+fdJqcH3pXGFkdyhI++DhBfG1b/DQAAAAAAsEvMC1T8VnGq
Uj4IvL4ffvjhL2tmAu9odF68Xw+syYAejVtHeVG+MAAAAAAAAGBGzrkNvBvl
BB/NEZ7XZJgdl9T7NY9aY13aNBag5450nTEf/73kcsXzZQAAAAAAAFjhc0DJ
QY934znCe2NQOeaquPoIXTd61kjXkubg6//rvZqDT37y9+TlimctAAAAAAAA
sMpzKCu2CLwTL9+ttWGDj1eNzHmPOfd6X56bH+t3kJ/8/Xi5Yi1hAAAAAAAA
rPKcHswDxTvJ8+FH5rB73LWXD0c5TSKeX3r2xOPzrL/8XshtAwAAAAAAgF18
zjCxJrwDzWn2cu1jUK21PHMO+shZU7oulGO+tbayfxa5o96Hr9vBmCYAAAAA
AACOUh4PcjXgnagca856aWvF57UmbOk9ea1Yxet7eeoV119daxbPRX0JAAAA
AACAnTwPB/NBgT5fH7QWe4/1Ybmm3os/l8G4CwAAAAAAAHbQ2pnkuAHGRJ76
2pqzPr9+ZJ1ZvAbPWcR5BQAAAAAAwC4ed1JeDgB1vdzz8e/kQHkvvn5wa+1g
AAAAAAAAYIbyNETeBv0JoC7i76X5856fnLVh34c/E1EblwEAAAAAAABWaR3M
iD+11tAEPl1tHrVi8xrf8msJ78HX+2XMBQAAAAAAALv5HHrWtATqPB+UrhnN
p9af2hSvj/g819F78LqRufMAAAAAAAA4i8/7ZY4oUJfz2ChuG3PpI/8Na4i+
B+pFAAAAAAAAXEHzRJVTm3miwD9S/N3XT1ZOcsVr9WfQNUSeqPfB3HkAAAAA
AABc6eeffya+CCSKzUecVtdIjee+8bg9XpPPned8AgAAAAAA4Aqx/qXm0mv+
KPDpYn3QXk75yG2jawivTfH4iM0rTg8AAAAAAABcQXGpmCtMXAr493zzrRwn
/uwJecpfX4y1sM4vAAAAAAAAruaxxlj3EvhUire3Yu/KaxNjWuSFen1fvnz5
81zqnFL/AQAAAAAA4A6R04M8N8C/jVlpLnVcE5pfrS3i8sppw7z51+drDTDW
AgAAAAAAgDuRTxv4R4rDx8b86vehccgYg1FOIwAAAAAAAOBOxKsAfIpYG5u6
DgAAAAAAAE/hMXrl+ACAd6O1sInNAwAAAAAA4IkUo1euG/LQA3hHylVEbB4A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAABz1448//mX75ZdfDn3e77///udn+Gf+
/PPPf/49AAAAAAAAAABPplh2xLZ/++23offodT/99NPf3/frr78OveeHH374
4+uvv/7jq6+++nNTLH11n+Ozvvnmm7/vx/fff//3z9d/E6cHAAAAAAAAADyV
4twRLx+Zzx6v/9vf/vZnTFx/6v9/++23Q3F6vSe+b3Q8wOk7FJPX+798+fIP
/66YvPZF/65Y/cg+AQAAAAAAAABwJcXjI1Y+Ep+P2Lz+dBFzVzy8N2dd89r1
WsXYZ3ns/bvvvqu+TnH/mEev1wMAAAAAAAAA8BSKdStG7vlmWvF5j+XnGLz+
f3yOYvUtEV9XnH6Wz73vzYuPcYAjeXQAAAAAAAAAANgt4tce827F5+P1ymdT
ovnsMYe+RnH8+K6cmyavHav89lnktWl9R1BMPr5rZSwAAAAAAAAAAIDdInat
PDU+L74Vn+/Njx+Z2+7f5a9RPprIYx9bzkuj18e/1cYIat818noAAAAAAAAA
AM4UuWg0F13/PRKf99h4LT6v+e69fDKep771fs13zzl0ZuPtxOcBAAAAAAAA
AE8SeWgiFj8Sn/fX1OLzI6+JOfI5Xq73KmavrZTXJn8+8XkAAAAAAAAAwCtR
zvfIaxOujM/nHDmaIx9z6hVDV56bGuLzAAAA2Km25lGN2tJ6T37Oczc9Szqz
X9oftXdbuSqP7MsZn4vrqfyqH9jqcwWdc517f62eqT677Ie41nr7qn2auVZW
aY7byHFz2q/ac+X4Nzo+pWfna6+t5dHd5Uj51vnW9XXVNVKi+8AV18NRdx6j
bPZ+u0OsuXiGK+vpO+j3jd7HwlntI2CVyq/ntQml+Lz+9LbEjvi858hRHait
l9M+i/ePrA/r+XLyWrQAANxJ7UT67ECf+mCjsZvVz1dbUe3jkb6b52o8s30Z
z5zqe7wPquNQOhbeDs8x1V37oj9LsTF9d2+eTY3a61pz6gmxhIgTantXvl6Y
z9cqiXldUaZE51/XyhV9K9/XVl8xyr6ulbPiXbmfO1pe47n11evjE6hsjdap
OoZn9+11rlbvOX5/uGIctyTKqa7Ts8cydF20xiNa48a6NlrnUf92VV0c9zgd
s6vi9LrvxXfu7g+o7N1ZBs+m35TvTT0+b5e6GE8Q9U6uH0vxedUX3r7ZEZ/3
eLn+Pe7FrfVks2jjaOtdV9HfGnktAAA1ajfvbt9e2X8CruZtvF2b2qZntOf8
Oc6R69zjL0evXb2/FgeKdnvutytmURpLGI1lroh9qZ0D7wMcOb9XxxH0W9Q/
8TlDsR2J0bSeN9A5r41ztMaIdGzUDzoaO4pyos/qHe9aXy3i9qPXzI59bYny
V7uf7jh2q/O+vFy9wpzmO/gxGqlTo1yeFbtVeVF9tDIG63Heu+bqzsYtj5ip
+3P5j2N11r1B9cfoOfB9Gakbj/L48hn1aNSd79zHiOM3OrZx5XVxJv1eldHe
fXGVyoyO0buWm6eIdpSOdzxLE5u3vWLOSG7bz8bnS3VhfK7q2BD34978jdJ3
9O6X+q1R5wEAsEr3Ed2vZp+lbPF+APCOam376AePxJA9JnbWnKfox47GtNU3
2tm+jNhw7mPW5tV4+9aPR22Npx165yza5yvfHZ999nxs7aPKk35D1Om9uNBq
fG0k7pSfi5DRONeR8ZcovyOfEfM7S/EMH7M5y+i12Sp/OsbxO47EyGPe18w9
258d515fFuVxplzHHPrReP6KyDswG8+L99z57P7R+mtGr+73Z1vy/tTuceHo
NauyEW33nivqM+flfrYMj8wZmm3XvKI4fqPiPvCqOW60334vO2OcQfWez4fm
WYPzRHu0tOX4fPx9Lrvxmlod589Als5jqY0X362+xqiR+nMkpz4AACM81lLq
J+jvZue+7Iiz7KD9jvmjpZiS7s/6+5l5SEBLr0/uop/whBhgaMUjYm70TH3g
sSaP0ZeOU4xXlPpls3PJZlwRnz9Sv+i9kZsz+jH63FYcXmVK/64yFu/R8Y3P
0rYa+2v9pihvpf5UK94Qx1j7fSQmGZ/TK+8+v7P0Ozy+tHLuInY2Oiaxc1uJ
90VZmolVRExf73vHHBM7rMQCJOIKtfpO5/ho7N5jGyOf5eMxd8a0nhifL/37
aHz+iLhn9p6/O3N8u6Q0b3WE/55WnUJ8/h+1ytsd6w/M8LwgK+ugzNLne47F
Jx+bdzQay477YK0eadUz3sbz8+vzolr3Pb0u3ufj2bX9jX2Jtq/eo/qJ5zTw
CqI9SCwMeIZoo9TGp3V/mX2G9O74vO7LntMh8trlzedqRB96pJ12JHYSuV+P
xhmjr3xVP1nfozKiYzb6bHusvxhzoqMtPJqLweMBM9ud7aFeG6702jP7Brvi
8x5vnH0e3/Mvh9yX1OfFc8e1fZqNcY16Unxe15h+Z8TX89aqx85cx8CNxOdL
/zYSnz96zxj9nIi/t+JHOg+l2LOuhdF4pr6nVkfvmD+/y8qxj3r9CTEy1aG6
r9TuNXeMH+g7V+v4mFNQEvGFHTnI4niN1E8eO70T8fm/inH+VnmIfbnqOZco
Vyoz+Rmf0a3VziA+/49q5c3nKs/UQ55TcGUbzR+yun87+G8kRn+d0fh8b368
1zNZ7Rme2toOqhvzHCLvc8T9rzZ3KddZ8XrinWUz/fuYS6nywFyQcSv19mp5
1Xlp9f9W6TratfaW6hCVoTy3Tf8d5YvnqfAUI/k4ZnM0RJm/4xnouJbj3tu7
1vTvOZ/46BzO/DxmrCuY66bIA53n8B/Jy1nK13cGPz6RR7B3TCMfcpwDP5Zq
/8Qx6/1+b0fNbHeKfeidV287Hmlv+FyQK7eZGH20w1rx+ZgTXnJ2X/xJ8fkV
MzmVdn7fK8XnazGLVp9c9Vyu62KcakdsNJfr2v1qd3w+X7f6/Noc+Fpd79d0
rx7Qa8/qU43G/u7Ilx51s/fxdz9XcbQcxvhepvOVPzeumZF23ZmxrqP9yBmv
EJ/3uZ21Mewrx9JK9/tcnjw39YpXj8/HGhB3tN1Gr03PA7NSL43EOXze/F3x
cY8BE6O/hsfne3PV4jrJY4u+TlCJj71k3hePeWe5TxP3O38GtTae7f3deG3U
ycyfr1sZuy3lS0XZSt29Ul51PfjcmB1tM3/Gace9Po83xxy4Uvl71XYF3stI
bGc2V+mV/Sfn83Rn21m53zx6D/BrfiR+4u3RqCNmYxc+L++s3AL6TM9fMDrW
4v2O2jnw16hOb+3/yv3lLj4foGfnGoAqp7rWSsdxZ36bI3S+vTx47CLWkfV9
yO/Va0f6eyvrXZfqQO1TfB/x+fL3vUp8vhSL97bkkRjE0dho7GuM15Xmiey+
JmOueZTv6E+WXlerx0fHh+O+esb6yN4uGd2ubJPEdZKPX++5ihod6yvmjvn6
sV6+45oZXXf5rHUqj5zL2eP3CvF58XZoq+69Ys5MtBtb86dzLoiaeAYzXyuv
Hp+XyL9Zu4fMlo/dbQ2/R6o+aPWH8jyRkb7TytocZxl5BgV7+BytWpvH6Trx
/Fyev7611nUrp1de97vUPmk9P1Jba+RJ/dFXkY9zvv5ifmN+NpLrtO/s+InH
iXa2s9VOyW371XtEHgsv5U/zuf9eJwB3Go3teNnt9bvu6AvveEYy9/dH7gGz
8XnJ81Jm6x2f73Hk99boN/uchZk+7WieU49lt157Zj9/t5k8LDN5BY54Snw+
876kl6+cgz6eoRh5Ln80d21tX+IYxXzi+Jzcll/ZiM/vjc+vPjcS8ZCRfTn7
Goh+Zn5GKcc2tD/al139kZXy7PcYHx+e2XYfT78P6vh5mYvYVx6H6Y0H7xJl
rHcvGK0XYh2PmVyD+bnAlS3aQL6OyMx2xr17tU6NsaKZ9tKrxOf9/LTq3iva
5HHNtcafeusrBK+rvCy9Q3y+Z7Z87IzP+7OrvTlAeW7TyDXv95Cz8hbO8L7f
VWs0fKrSurGj+U7j9SN5KOK1tTpG10nru+PfS1v+7tZauGjLcdGa3O68Klfb
Kzvzvq/rqtYPWP0+jz3lbfVa8rGz3r0p9ytHc7QBZxiN7eS6sdVHvLIvIH5N
Hb2ecuyi159fic/nvGuz43SlmMMu3tae7Vv7eRiZP+P1ZqsP+yptnCgL/lx3
ScwbuqJfckd8flcOh1jTbOW9pRj9SrxKn8P8+fL33T1/3p9xmPkcj+u29uWq
fnptHbNZo2sAjv6+OJd6nR/nmTolXju7hs2I+OzWby7lkbgih8FI/iRRe2Xk
PhtlVvXqzH25Ns9vdU5A6/dc1e5b+Z58TxotA6NjWa34fG/bJZ7Vzry9efa5
Galbor7rtZP88/JcGeLz/2hnW2M0P3iuX0fnRjwx77vPAyVnOHANn6/Ya5Pm
udpoO6M+U1/AnzeK/FB+Xma/L89fVxv36DxW8c8cnZuT4wTko8ddZvprXm5b
19+VbZw8533H3LiZemElPi85fjkqYru+/u2uY30kNi9eR4/I8x9LXqkPNnp9
9NZz2Dm/867587UcDjne0Su3cS225sDMlLlSHqAd+edr9/DSehS7zdTh6gsf
zTXylPj86uf4+GbrM66Kzx/NxSyjdY/MxufzvHTdI0bbuh7j3y3WUu7Jdc7Z
865iLvNI7rk4nr21WKLMHs1Pshqfj7V3a3z+9kh/5q51U3zbMZbl/167r7Tm
Hux8Tl/fXypDs/fITGVu9pmNWIuptD/5GTmnsuPvqR1/4vP/aGd8vpfbO3i8
bKYse37Op/A6jDn0wDU8btCrz3Nbjhw3bbtjcfFsuT5TdX/cq2f79U6fEe3b
PBdoNA5X+1yPkY22nfOzoq+SvwHvZ6a/5jlya3rP2e7mcYld/e5c17T62avx
+Ty3avZ9Os7eNj7623c83zn7e/w418rUK/XBop3RmhPpYxKlOIbet7Nv0Mqh
2NrO6J/4fdjHgdRfL11fMc9Ox7UXO1+NPciO+Lz+Tdsdc8FG63CPiR2J0b9y
fD4/u9T6jJVr4M51/0bjJEfi8/F3o/2iM+Pz+szR5+X8nJwde/E2ieq7kefw
W/u1c7xoJT4f9XDrPSv1cOn5lxFXti9H6pPItRAx6RC5FWK+Wc7JcNW9YvS5
vhKvL3v7688BxT2mVE/E9ZHH3KPu9PcRn5/fdlwXcY5an+X547WNxj+8HfK0
2IffJ5g3CZwr3zNm8p1d1QZ4ZbuPU6wFkT/v6HnRfaB0//DPnL3X5zkgM/V5
Xh8DuMNsf039jJG+/xV1Z67bd/Z3cg6Z2mevxufzM6Ejoq8Usfg8znekPRnl
QHXRyufk+nnlPaV44Sv1weJ3xHMIpd8zmmNlV7/lSfnnYy68YmpR3vTfEavP
dYuvT1mLw0Uf8cj+7orPx2uOzE2/Mr67GqN/5fi8rqsj8+dVPkfmRKtcjsSw
PX/DFXnR/Ttn4/Mxhjszh/vM+LzO42gbw8eyz4zP53vabC7m0rGNZ+V2xItW
4vOqf2OOf82Z5zmbjQceoWM+cty9HViaK+HPJq7mYLx77K831hTHIPaxdm2O
5L6L7yI+f9/6sC35ueWZ+UH+fPJIHszWPuj8l/JI6e/0PbW5HzV+HV9RvwCf
LLeXevfaHHNFWxynq/La7f4+/8yVZz69PTEj51HiOQ3cYXfu4h3zWUflunrn
NZSvz1o/ezU+75892l8rzWnxtulqv2/HfJYd8flaTO8p+SlbcrmPvkFJLU+0
z0fSa3bE654Sn4+yG+XL+5Jqk0Wf3uOU+rtY97G2PzviQqPx+VYfdPfabLGO
6Yh3zD+v379SF5Xi85Hb0NeHHNmXXKbi/UfzA7mrz52sxudV/mef04r76N1r
efXip7vomEZOzpn6IOrHXA5iDsKROFbev155y2VbxyuOX03s/9nrafmcjLvL
VPDxFdUNtRhDLQ98zEkbqe9j7G9mrMbHwmd5u6ZV53meptY9INo4pX3xdXni
9xGff2Z83vsds2tue1x/dcwxxgx74zyzZcTLOzlugHPl/OA9+dlEtH1yfN7v
D7N1ec47wHMauMMrx+fzXOSd8rObvfjgTB3g8aHReXExVz7fk3w/V+dg+pys
1TGOkbnwvffUYnrx9/pTfXKvd7Xv6uvd/SxqztcZeb5nxHjvzrjDE+LzpdhT
7kt67hv9XexH5KOttcXi9x2JC5XqQH1vjKPENdY6hr2+sT7jrPnR7xafPzJe
6J8TcfmIfekajXI90q9vbTti9B6PWv2sI886zcTntcVvruW5Lrlj/KG1H9rO
mhcZ5VbHqnUdtN6b4/D6nNb9YGYcT3rnI+Je8ZkxTzbmbtd+T9TdZ4+l55x4
Vz1z0hL3t5E6Qcfd99vnxO/MRe/ieK2cmyiXvWe843fFnOZa2Y9jVaq34n1e
5xOff158PscuZsqsj1Gt5g3In+Fz5GNuw+raXPmZ5N20b3lsY7b/otcynxPv
wOc49/q9OZ/4O9f9u/i9359b3x0/eWJ83t+72o+krOFOu/vPnl/7bKs53Efk
PMW1z5+Nz3sccqbPFN9Tev3K5wX/nR4DrcXCI+5V+l1+rEb2ozdGGXWkYhal
Z1jzdvbcvZZoZ0TsJ47H6H3K+wU72953x+cjN0MuD6W+ZJTFiI37Pteuvx31
l39GxHR1LUSsbOQYtvrGEePYOe+6tv+7jeZjOnObaVtF+dWxVrnzY6JzGtdW
q04/M8dT8PvA6tzouLZm64vZ+Lz2T/VblN143mXke58Sn98xZ7Ml+o7xO2fj
81I6nq18WR47nX3WprdFrFX3s/hNKgOle6zf+8+OG8Vv1rVTew7tCM9Dc8e2
O0bv/cyVcj/yfFqU/TgXtbIfr6vV5zFO4eeU+Pyz4vNH4xY+n2j1/uptktr1
P/rcR4n/vp3XYq8tNfrMbPQ1iNHj1c2s35nXor57bH51bbeRbdd9babdcaQt
9bT4/NH7FPF5PMHu/rPnoDxbrmPu+PyZ+HzOHzpaH0a/pnZP8jGRI3m2Ihbg
Y9ozfUgfJxhpe+cc/7X4/Ex/+a71pmIfvQ88s9Zrzv+yy13x+ShHtThe1Dv5
32LNwFx/1HJN+5z7VZ47Xp+XcxTsbIedEaM/OwYaOYjy9z0t/3yswxjHOa9l
kMd7evtyRnw+9innfTkSF5yN6a3Mn89lNuYo9u5hT4jPX7Eeoc6jf3a+Ds4e
5xotA73zEf8efWWvr2LcMouY2xXraPl1o+894xl3HceRHDLenisdT3/m5C5x
vFbb4yPx+fyMR+0eENdhqZz6GI8fd+Lzz4nP57lFK/fH1XygzscYW9eW9nWl
fvDfuOtYRv3vayzF+Kd/X++eemX/GjhTflalda09Md/IK8Tno35RO8Dvu/Gc
0eg6iz3E54H9dvefox1y5Tphs+3YnZ9fa29GTgBt6uv5Opgz69pJ9Gtq88Pz
3PWZz/a2rtqO2jf9nc/pVL2e4wulvDw+TtArU6V4RW5re3w+8kcHfXfp/qJt
V67eUbGfuS8Qf987H/4Mw+65nattiCPXr35PPGtR+3eVtdpxUdnIffjIa5uN
9NNa8phZ6RqLmG/rPF6Z+7X23St1+DusDxvPW0RdUfqc/OzsyL6ccQ/TfpXW
WhCV+TwWUuJlVnWO6t2ZemM1/3w2ktPkCfH52vHeJXIWuNKx033p7n5lnI/a
PTKPm/rxinKT6+aIAV8xNp7Lk87pHcfUr8HW747r/a65rnGNxnjLbP877n21
uiLG0r2c1OqNaFv6c0whxnhy3JH4/Px21vXg83ZW61Jvj64+7+p9ljPa+v75
O57PibJdqyfimU0/h7pGPG9PtJnjGrl77jBwVM4hnKkeK41f3d2Geie5/zua
bzl7Wnw+v/dofhvKHO4w03/Wtaxy3rp+r+yP53bpHZ9fi89H7gFvb7XWDG2J
+1PruHu8eyZ/ef6NrWfMcvy9VOd5XR/74n2xaGfq2OT2fhZx3l7fNsf6r55b
UlvbT6I/2nJk/baeq+fPq47o5bOLNRRrdUnp7yJ3XmlfV+ZtRp/Ir9Ha8Y/z
M1LvvVJ8Ptpms22X2rMPcmV8Xu/xvrR+R22tgHzu7ozPH23zteqbEbntuRrv
8XnptWvj7vi837POuDZ1DZRy0Kzkt7lCr56K+3dJzAPI9eRVuecln8uZZ9R2
GY3Nh2gLnrXuQU0pt03ME6nlKcx612+eNxF/l8tYPG/jsUgvL7X1hYnPP2P+
fG77r8bF/f63eu7yGpG7x768TbGjfEV7t3e96Rrt5R8jNo934c/uj2yj+Z8w
J/cHjq4jv/Me5J95JD5/dH1YconhDqP953iWuFdOj7bfZuT6+8zPr8V8dzyv
2RLxpl7MPefLHxkDzfPuR+L63n4sxUX1mSNtTO2v35+Promav/PK+3gpt02I
GFZrPb44lmfs89355zMvczPnPI6Ti9828zmxfl2cM/0Z8aXaMRqpX14tPp/n
TczE6FsxvF58vjZWNRufz2N7EesZ/ZzWOT3rGvAcNqufHXGuI/fXXfPn/Vru
jW3dEUfze+JZsePafXYkPn/kmZ9VvXxgvboujzf7MT77nlvKoxPPyF9V78Z8
8dk609eQvWpfa8+yepujF6dfuX5z2Y+8KFFneb7GuH6iXsz9C+Lz98fnc9/i
yDySHfH5WLPa7/87x752x+dlNv+crt2cS2jXPWwmJsr2OturGV0LpzcnFMd5
X3AlJ9gT4/NevmbnbPp96oq8jUBJr/3teaR7daQ/r3RFfZrr993tUv/sWgzw
7Ph8/EZ9v76rtY3MBXa5Th2J+eRn0mrnWW3JnMc+Pz+wkou/xudynlEWet/b
Ove1+cbezzhrPOtp8fnWeETkKyr1ZaKP6Mcpr8nbk5+ziHmvrTow4j+943Gk
b5zL7l3baLyp1R+oxSXj/NWO42x8PmLdubycHZ9XeVm5VnN++dnrK9br3jFf
cFd8Xnzthta/Xx1H81zJV89blpFjN5vnTqIcrd4ve3353r/HPNr4/ryOwplq
3zXyjNoOuu5r+bNG+BzkiLedNabhuX1LZcXro1Z8Mz5j5hrKZT/apy7uxdo3
X/M3Iz5/b3w+j+MffTZ1R3xeSuu17MojdUZ8/knubmeynbO9Gt/3fH/xPtGu
NdMjf+RIDslPk+eLz7ZLnhifz79pRs77DNyh1X+O/kjp+e0Sz493hRxv29kP
z3NGap99Znw+78PMNjIfe7VO3VEPe/9xx9zxIzn4j+jl85U4zvnZ1Oj3nFn/
nxGf77VtjsabaznwIieO+PkebbvV1ols1YG9tR/yZ5TK3UjZjnbjkXzwV/Ul
W3V8LS4Z5apW1lfy2+jc1OZbnhGf91jFTHw0YgkRB1u5V3gup6NjeTvj86Vc
Fe6O+Pxs/pEzjBy7o/3x2XIQdWZrPlCvL+PjlTEPemVfVsR4S/6uKM9njcPE
HBV9x8qYilNdkNfMibVVdA3tih9E27g1bpFjnKVrZaU95WU/1gbJ4jkgX9O7
dP6Iz++Nz8+WK+9jreYmdt5fOlo3l57VPTJ2GXbnn3equ/zzY+3GmeOq15Jv
Aa8sxx5auTJb/Y0ez2Ma4/i9NtAnyrHs2TbOE+PzOX42s0/eLroibyNQUuo/
ex680TaUx1uvajPnOODOOOfoPPEz4/M+x2jUTL2yWn/tqId3zaOp7dcV7dfa
urAl0QeN68nXszwzL8Du+Hz06Xv1Qine7OMUmcd6WuvG6t9j7fnRY+/UF8r7
3oohxndGTKiWn6DWN444xJnl8coYaK981OKSvTxPR9aHXfmco7HR0Xo5xrjj
+bPV51O8rindi2JtmJF92hmf1760xq5WxjOOynXtHUbnz8/E3+TIWiUj532k
7+rP9K3UwStKuW3yPu2IH7q8RkktF0xpDQ+dn1qZL60H6Zs+60j/tjd33uUY
fV4r6Gh8viaeQ4p9rbWDdsbnYx3nnblCzrQ7Ph/rIIy2RXIfaMcxO6O/5M+1
xHZkvNA/a+c8nzyfrHTdz8yDI0aPETFGquvtKbli8noWJX4fW7mmfZ6GXys6
Bu88rrviHePz4s9+zTybHe+ZGceJdp2uM9XRT1t7Cq/HYzu53zAzHynaDBGL
uOKZ8lx/R+xuB29LtcZuz4rP9/otI/sz0m9eqVOPxsE9Fqt93HXOVurUI0bm
zgfPZeN5f85uY++Mz4/Mt2tp9R9jP1ufGTFe1S0719RtxbdzDC3PfRzdzhyH
uTI+H+3q1nqBpXMcf1+7Vu6Kz7c+42h9Xrr2jsbnS+/znNgjcZSd8fmeM+Ic
LXHfvjM2LzO5gWYcyWER126tzuzloAp5XsQVsc5eHTeah2yEr1Gi62q0zvf5
Ia34e+neEH/uzM8xeiw8Dluqq7TNxHRm6o3eWte+D6XvGL1f5HjQSrznaq17
VEmrbsjz4HvlLOd431Wfelnb2V/KeXiOjBke7d+UxPFXHRGfqWOscun1S2/+
f5T7q55Rx2vzPH8j8YyreH3Uqgd832f7BmfP05i5x89uV48f5N8yW+89NT7v
bdXRcu/rIs58Z87nrI31jHGEt+X92Z+ZPpdfm2pvRBxvNC/OEfma2DUuMDoP
/az4fNQRs/HHPGbRqyf9/jfaX/G25Ao/Z7vqcR/z3BGz7Yl+xsw5z33EI3GN
Uv7NO7bRtk/UEaXX+3hNKw4Q+Rm8zO6YC1KL/USZKuXCGS238fozxyuvjM9H
u7r2+2uxmdjH2vl6p/h85MPQ+3vrHfbm1K1urbplNj5/JI61u55veUpsXp4Y
n+89jzdT7qMOPmudEudz51vtyaM5T3St6hjFOjlRV/WOeakvNrIvfm3ou3fE
i72NMdPHzs+JifdtZ4zG50fmoOyKz5fWIrxrDuVZdf7M1ovR51h367qbGRvL
z+zulPs+K23DM/Yv6q/afan0PI2Oua9Pof3y/LHEfTAix03PuO5WjMbdPVYw
09bw6/jstd3O2O6Oz896anxe/F42ck/wOOhMPVs6j8yhxxE5xjc7h8fnWXj7
Y2e+3JZcL+yYp+r9ktEYxuz9o2U0Xlnj7f9ezh8fKxyJa3sbeCUO4v3HWpxA
r5mNscfn7n7GvSTmJMx+1+7nBmK9m5HP0bm683nY0nOGIcrgSHmaKdujavHt
2C+/x67G58+8T18Zn49yX1OLzfTe9y7xeb1XZb33nIB/duSd7n3urnvMbHz+
yDm5qp36pNi8PDE+H3VwLxbaKxd+Hzv7fju7zu8Z+ZRG4/NuNj6/g4/Zz44H
6zjnNpe3bWeMxucj9jIylpjnQ8/WTd7OvSsG4nR/GGmPxZjRlWbnUvaegci8
zzlTd4x8h4/DrFxXZ8zvj9xbvXa655WtbcTmMSOvy7Yafz1zn1rxIa+LZuYD
5jmAu9Z1eRUeFxu5z3i9s9rveWp8fmbuptf/s3FLHwcgPo+jSrHtmRieP1NY
ajd4LPbMtnCeQ390/rSPn/Xq8zPi8/GZq/HHfF5bv8HrrpHnf3zsYjbeOxKb
930ardu8D3/Fs/aluWY93nf2GP0VMfM4Z72xMpW3Wo7dI2J+kD4/4rTxXT6u
MvK9fr3tOte1+Lb2NccFPjk+X3qeICvFZqI93qrP3iU+37tfnJHfZta7xeef
FpuXp8XnY1y9dY+Purh1HHOb7+yYUbTtRsu9t2d23x+eHJ8/Y03kuK5m65yR
sj/6/KHKbek8ztZNvsbvav/7an5Ote+tcTUdxx3lKPcdeuM8/vrR4+nnYfQa
Hb1neYxkpW29mtugRedtZl/0W3Xt+RzjV1kzAc+jcuNl6e78Nnldi1bbIddH
veso+pne1441R7Q9vc7fxY9bLx6Wx0tW6pknxecjtuKivdCLM/jaSi7uC63y
o7KZY/SMpeIIX6dypg3h8cZW/8zH5c6KH+Xcg0f6Zt4+G6nLd8fnfW7akXuJ
3497/bWZfDMrsUDvG43mThqdc3JGv7Ql2hYzY0B5XML3Wb/xzNwnOVdwa8wp
1piMY3nWXAPVHTnvpv5bZar1nUfHE2tKZTqOWy6rnxyfj7qxdcxLsZnasXTv
Ep8f3b9PiM97rPSsdurMszdXelp8Pu5BrWswjmXrfHuOHB8XPyNG77mWZz7b
73k77q2vEJ+Pfdx5HczmsQ+9sh9t3CPPuq7WTf7dT1bq07TanDrW+k2RF2X1
O31ue29+UM5tPdpe9OtzdA7SSN4mv9+s5p/fnTsReIqoM69YG7AlP8vUkmPH
o/t+dszp6byv3JtnOrrWYksec9k152AlPh/3sFqO1d5aNzm3gecIGfld8Tm7
nu/HZyvlyW3xtlKvP5DXGToz5pdz9cy2U32MbTQ2vjs+7/twRM513svrHe3S
Vt6Vkfl1+XNjnbU4PqPn33PO6vv0/32/coz3ivtwlLHR3+/Pq+ZrLPe/ds1/
cjk2Pzo3Pl/fZ1yzPqd/5PkXv7713jiuO2L0pft2rMdRe+0nxufjXLWUYjMq
Q7367JXi8yp/qzGQT4rPe5v9DLl+m93OvCafFp/XvaYXD+3lhinlrx+dpzEr
zu3qM2Y5D9qRe9jT4/O+9uTOMZLVGEev7MfciyP37dW6Kdo2T55HmduG+u+R
MuLrhK/E6X0uVa+u0PHL65rO8L7aSJn1mF7M8Yn36U/9f//MlfPr8f0r1tUA
rhJ9/LvnzsvsXP7ZdZ+vyD3/dHkum45bvof4fLyjfench98Rm84xrNGcwH4f
U9mJZyc8L0brN+RnLnwfRr4/nt9gfBdX8nijyvpKDPvMPrGunXw9jfTN4vnQ
2Riy3pfXRs9x5BkxB2ZH3DHnkOy18Utte1+baDTHpN6jYxAxufjulfvkyPqn
pfvOGaLPNBKbj1yuI/2kvFbYrmfw/N6m/V5Zj92P/644vbcJfL/02bXnnnU8
Ys5bvD73YY/MCcnx7WjblMrVp8bno/+by0Be/yD/3pgD0du3XfH5iAmfFZ/3
mPCR50CfEJ8f3VrHUuWhdr/z9ex2OxqbP/uafFJ8Ps531JGqQ7V/no/V+7T5
Gvc6u1Tm/VzsyNkW986j8f7c91zN3fbk+PxZuZ2O5Alqlf1oFx4tIyvx+Zgr
9LRnbZy3w1fuhznmMhqnz7GQ2W02HuP9k5G2W47/tLbVsXM/buSSwTvRPXXX
88arct0UW6+/m+fb6zNa93Fvj3xqjDTfR/x+oPZM/reZuJdep/pbm85NjoH5
d+nfI49t65zp3/Sa+NzSvkc7Tuc/Xlfa594aHrU29+r7XPQ/uX/gKroGol6N
PBQz/Rx/TuWKWGrOtxZ9vbimvW7xHKqj19RoO3G0bT2yDviuz+ntV8xN9tis
jo2O1Uj9rTpW7433HGkPRJw7n0vtn/7+yrU39J0jz4pEOyiPcbRE/Ll0H9Jn
zK4J4W2gI/HO/EzKaG6imphzFbGSkhgXiD5b9BtVnkpxo5yjc2Sdzbw2W9QB
sU/Rrih5Ynz+7GdI4rn3Uj865ynK9bz2aWTeQ7SpZ36DvkOvj/VVtUU/fjQ+
f3SbvR6eFJ/fMX9en6XrJ9r90R73eMoZ5XJk7La3fUp8Pvpjzuck5Huri3FQ
He/Wd64+q5W/K8pNrw8+KscD9Dtm2yUj/bZ8HkfbYkfKYfy22fWWdB/tPU/p
v3n2PNTqjV2x+dZ31MzMr7iLz4lYmVPhSvM+WufxaF26mmdI7x2dFxnjij4X
cqWPUhLrc+y6xwJPEXNr7ozNSy3m2rvmfKzYt9rviXj+03OYXUH1mvposfZb
rjN1n5htf8y0bUbbObNzhlr3ndJa8K22Wui183rPbkS8hNg8rqA4lq/PdaTc
xXo3V66XoP3XtZrjzXGt6e91fd9938Kzqey2+nV+nejPlfnvPuc+b6P3UF+f
ZPSZ6JH9yu2q2c+NWNDoHEb9u8+nb/X9SvsXY3Gl74mx/1J8L3Imja6nsatt
MirGNvzZu13PELSoXPbmx+XnNST64Pl6UHmOuje21TEGfXbpnPTuVa122pl6
sfEonzqeMebg4w5Pi8/7Z5bOw6c+5znyTMtqXTJTn9Seewk+jpL78BEvHM2b
UlrrZDQWHs8izuQWHFW7r47GtZ82fz7G4Ff7glGfxDyCuJeU5sOtxLPzOgax
v70YcU2pPpy5X0S76O68yy0e81h9ziPL1+PT4s6e/2x2jGk3r4vpD74PXfOf
vLau6t2j+d1ezeq6KcAq1S+7Yi5ASc5NovpN97ddeS1YyxivRtdCqV+nNnz0
ZdX+6T2/NcqfVZmZ8xDx0TPGb3MMfDTHTzzHEn3j0eMTMaXRdmUpl3/v+zxX
V/wm/V0vP8Pd8+c911TezmiDx/zo0RyxHoPR+avFT1bj6q399LmHPU+Nz0vM
Eyw9l7Bj/udoLqF43nSmXss5RT41/+dIfH6lDM7UJzE+1qrP4tlGXx/Fn1ub
PX/+LFg8h9S6pn1celdcssTzU8/GK0bi83n8cjQ+r2M0sy/x3PrR+dWhVg/H
9XskH1A8fx734xX6fh332nP0rx538zwEZ8TRcoz+aXG6J+SU8fG7Vy9P+Kuo
Mxhz+Rw+zgkAryzm08QcGsaAgH/vGzq133WtqE1/ZK2BHvWjRmIjanfG876j
+XRW+PPIrbnUEW+JMYuZ/mDMwdV7V+qgyK0xKvLjxNwtfW+vHT+zjrvsWAuv
RJ/n8Yoz+pWRb2KlTGl/RmLJHlc/GntWeRvNi3HXnCpf93KEz6vcVY5yfqfd
Ws+vfIoz4/OjuUJ17Y6Ucf8slY2j509lq1dvxNrxUf9eETeM/HOzVK+0rpfS
vsczd63fNXuPi/xwZ8QdSnOtV8+Jl3197s5z6/XhE9Y6PCKe41M5ObM+9mP2
xDjlnTF6YvP/KHKcvrqYh1CrJ2IOUcwrib7HTL8lnneM96ssj45p+3OwsY1c
n76/kVMQ/8bzpHzq3BAAAHCfyCt3VTskYsJnjN+pXXtVnMZ5DGkkHqXfP/Ms
wJljODH38azx1Lz266h4BmSU+kif0jde+a3q/+1anxnXiLVDWtfPao72EaPj
u25kn3eIMeUrvutdrDzLMiviTEfr4ihHZ1E7Qdurlp3I719b3+4MEdN7Ko+T
X5GPw5+fJGfwv/G8UUeeLYz4/t1x49qa5p47M3JuxrpUM2UixjT1Hr3X3z+S
yyvGW31ctHfP9pxQMfbAfMp/53k2aS8DAAAAAAAA43J8+Iy1fH0N6qPPibyL
2toxq+J5jTvHg/x53xwn9znWpdi2x+hrMfb4jNKaelGGR8pvPu69tbbyulnM
Ef8rzw0LAAAAAAAAYJ5ijoqhnxGfF8VP9dmfPu841m32NZt2zJ9/Qnw+5raX
ylDE1mt5Oj0fVK2MxHEqravhucJ6Yz+a/x5rdPdi+jGu5Gtt4a/i2Dz5WSEA
AAAAAAAAUHw+50fx+dyrjsbnc073yOveWwfERZy2NL881hWrxc578XntQ2s9
B33u6BqlcZx6xyzGFHydbGLQ/4i1YQEAAAAAAAC8qrvj85E/PHK6Ky6t+eiR
12XkmYqIjyuOvcJzpJTy23j8vsbzJ9VEzF2fF7+7lJdF+6Dfos3HBohB/xVr
wwIAAAAAAAB4ZXfG5z2ne+3fRtbxjbWGV+LXHuOtfdfIMYr5+60xgjhOMQ5R
+8z4PTFW0cu986lYGxYAAAAAAADAK7szPj+S46W2XquLufYzMdrIqRMx9db8
65FjNPMafbd+VynuHnH7eG4gYvWldW8/nefnBwAAAAAAAIBXMxOf9/zwvkV+
dMXJa68p5W33vDGjeeYzxdVnxgY8n3vE5nvfvSs+n+fX59wskdfG8+zE5xKD
/kcxLjPyjAUAAAAAAAAAPM1MfD5et7KVcrNoHnnEWCM/zewc8ZhDPRqjVSxe
+6JNsfr4fsW/a3H6HfH5yCOv/c3vibw8nv8mxGeO5OH/JJHbhnELAAAAAAAA
AK9qJj4fce28xfqqipXWXlOLuytu7fPZFS8fXeszcsTU1nUd/YzIHa/PKeXI
mYnPl9Z7lYgn688Qx00x+1L8fiQ3/qfx9YNHnn0AAAAAAAAAgKe6M/98UIzc
c92MrvUaMe+jc8sjR442zanPYo7+SHy+dgziMzye7MdNYwR5nIH1T/9Kx07H
SsdSx4Z8/AAAAAAAAABe2RPi80Hx15jLPrI/Me++lDtnVnxn6Tf42EEtTt6K
78e+5rn1Pi5QmiMfMf3anHwAAAAAAAAAwOt6UnxePGbdEvlgfL3VGsXUWzl2
Ik9ObS5+fFctz4z/eynfir6/dHw8f03p2EVufM95AwAAAAAAAAB4D3fE5yNP
SUnErHtzxiN3u+dz7+1fbW67jwnU5uLHvP7W/Prab1JMv/b9tbz3HvMfyfUD
AAAAAAAAAHgdigHHHO3a3O8Rs/F5xalLcWdfq7W3Hmrs90heds9Pk+Pvvj5t
K4+9Hyvft/j72tqyEmMgpfi89qd03GP8gfg8AAAAAAAAALwHxZYVL46YdN70
9/r32lzzktn4vF4f36+4tt4XMWz9veaz937DTN4Xvd5/b/zGGAvQn73vlJj3
H++J/9Z+1GLz+TiP7LOvR9vLaw8AAAAAAAAAeA2Ri723zcylj8+cnX+v+fL+
nSNz4SXi4r059iXaR//OWk76Fj+Grffn3zd6jI6eDwAAAAAAAAAAdou1Vnv5
6QEAAAAAAAAAwD69tV4BAAAAAAAAAMB+kc+dfC8AAAAAAAAAAFxDa7jG2qwA
AAAAAAAAAOAa33///Z/x+S9fvty9KwAAAAAAAAAAfIxffvnlz+3333+/e1cA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAw4Oeff/7jl19+mX7fb7/99sff/va3P/8826+//vrHjz/+uPW7
vv/++z9++umnbZ+HPVSmVsojgGf68uXLn/X377//vvVzf/jhh+m6Iu4l+Gzf
fffdn+Vyd5kMq+0qtUt271f81rPp2rqqTXg1nZcz6jCgR9eTyt9q2Yu+Gv0d
AACAc6itpf7fDuq7ffXVV3+2/2b6VWrr6X3aFCc5k/p98V27+pk6hvq8b7/9
dsvnZWfFpN5dnGfi9MB7iHvF119/vbVOjLpC97DRe5fqZb3nm2++oX55QWpr
7Igzxf1fZfKMe7TK+cp97Iz9is+8atO+q832TvwYMr6HK+j6V1nT9RR9tBm6
BvUevzbvvi71m5gbBQAAdlHbQvHcmbaF4ui7+3/R1lKM4Wh7K9p+s/GKiOtf
1ReLfdzdZ901zpFF/1zH59PbojNjP96XoB8MvD7dV6Iu3FXfqj7x+PyouG+t
xDvelc6JjsvMcRyle7aO8642gs67ypHaYUc+86r7v7aZ+3/s18573+hn6nVH
xs+8zXN3HHA3leOoa5hzgR1UjkplSdeOxiGjb+b9vahLau1pvVdj0KofnzZ2
Fv3nlXoRAAAgW21bqM+jNpHaW7ue+12JS5T4vMaZffPYiN67cx5i7bNiLtou
0Wc9aw7lO/dVZ6mcjY5TXPVMBoA5q/eviM/vrL8VV10Zs/Xx6E+Ps+m8eJtm
93iFyouPh+zKfRLPQByJ8Vx1/58t83fF571Nt1oOVn/zKyCmiN1U90TMPWLy
MQ6kejmeFSr1H3SNqW7Vv+le6O/VPS7G2lRX6ntm693c3z1r43oC5kVOgZ3t
BF3zqkPe8f4N4BqeW+XObaRt4c/Fll6vv5uNE+yaX7zaF4x+WMy535kjRp/l
80TCq8bnudf9m3jOtpdHk7nzwPXU12/NnY0Y+8q42Rnx+ahfZ+Y/R0z/zHr/
Veg8+jj/mTnDI/9xxI525qfRtjLOcvb9P9qou+PzK/PbR9p5cT312nKt737X
No/nV3xSbn2dC5UzXb865hGzfULMU3Wt2nqxX9rOXO9hlM6f9sP3S/t5x/0g
7osejx993jquafWV4t6tz9t5fPVZ2p8nlXnUeT3V2yIO+4Rr8lXF9RH1XD6+
s3XxSh66Xj/Zn+Mb3Vbu316v+nM/MVaof3vHeiQ/41Tb4jjsnKf7yeI5MR3T
GJf28rt6nON6Ln3m0brS22u1fX6Xubyx/tZZ95ZdMYWoc2txDdWfs3lqdsQw
Y77U7DxCvTbqpLj3xFyNo/TZtbGMlXPRuj5X+uc6R6PHaqavesa9y++X+V6h
vkCcs6vqgxibj++vHcfYxyvWs2vR/pXaG5Gv4ay8CE+ia0O/9Yy8F3co3Rt1
bu+MaezKDX10jHRmP2Zj9GfE5yO2MiPGCO+IH/r8ZG138pzEV5b71ZwvJR7b
Womt7YzP6z6R7wmrZb4WS9f9KJ5FmK2PR+LzcY/rHY+IZ5a8a3ze83M9hdpt
uo/5eE3k9o77wR1xAO1DjBP498czL7uft52hOifP/dE+xjzxI2uwrvA6bNYZ
z9ng9Xl5Ht125h38BNEvKsVfS+1o/d3MmNvM1usnr8TnZ9sX+TsivlAqh+9W
X/k9d2Z7t+NwhYjJ5Nh2lLf89zNzgdSeyuU1ruc83rQSM1P9muNItfqCHIp9
u+PzresxXjMakxytm1uiTindl1vt+tI8qzhWR9vdMb+xdMxrf9+abxJjH6Vr
dKV/HtfYyBy2mb5q7MvsGr0lK/eLq/j81VIf32NYd85v1XePjIvvytfwRN7m
evV4S9x749r1c6YyGfflHet5rNI+5XZubdxO17jKqI+/Hc1NMjJvN47RbNvh
6L209H21OqJ1PY7GIPV9u8tBbofdxefN3zEmtSM3TYj2uJ8rnf+ZvnCrLIyW
A79u4/pplfkdz3/OXO+9a3tlf0rf/67x+fhdZ41Tz7YhVCZb/URfG+rKfl7k
RKn1S/zav7p9F7H50vHwuSNXll3i8zhDbkfmekL1TVwPR+NOnyjfC3N9V+qD
z8QBZrZePboSnx+tU3IOrNJzmLHGtX/+znwLT+D1eK08qJ+Zz+8TnnN7JaVy
lMtbKXbTu0aiPVU7f/m7Z+tKrwu0z6X9iRzQ/h3vGlva4cr4fKx5NtrvOtrG
jThoqb8R8+PVj89tWZ87n8unPutomYpyXPqM0rmIfmVtPrbHlPL+rsTnvR7u
9dVm+qrRnzq65l2uZ2JsIo5nPF/jr7m6L+33qMyP711tRR9DGNmu7gNfIT8n
+8rz5+OaaN1TvZ159/mcaVdIXDNH++lRB/Xi8yv1Re1eqrpopI0ac8LieOjP
0n7EuS7dQ0fzjURZ2Nlfze33lXjMDl633RnX2bW2vH5DPtf67CgfR56fmykH
3s4Ivfaj/r30/Ocd+ee13zEHqcXPW+m4vWt8PtqlteNXOo+jz2RFm3p0jmXE
ks9eS2BF5NlpiZigXytni/ZM637qY1RXxU2Iz+MMOY5V4/35V2/nX2k0xprj
sb12xBnX9Jn3ZP99vftMngPwTuvL5fZ96z7jx+xJz+O9Aq/XWjkY8vlo1Wu5
Dmxdz/n7d+6z5Pjdu41j7XRlfF78PPbquqPxeX1+LQ7l9WguH7GPpd8SYwy9
MtgymsurtJW+t7W/R+LzI9fNzH2xtZ+j8rXdekbGz/HV90n/7uxIf2UXj0Hk
/D8xxzmX03dr1+bnvF65Dxi/pfcbfEziztxKs/H5eM/Rc9Srg3bH52fjIbP3
g3wPXZmbtGusJj93eeTevcrboVfGxkp8PsLOfqM+N3JJr7YjauWg1bcuPf+4
O7/NEa3PjDnN+n16XS3PwcjaDe8an497SO1363qKtZjCSn0z0o6I89W7R7Xm
QZwh7p+j81aurAOjTdeLj8V+XVV+ic/jDHlN9hZ/nu7OftcrGT22ea5X71p9
pfi81+Ojz9TmZwreZX6wPxfWu4Zymfj0dbBmzLQdcgxj5DNH5m6NxvIl90NG
5iLlcaxPfcaiVzdcHZ/P5751Lo9c2zG3ptYPi1hCju9G+7sVm466ZyVPRLy3
9ptWzsVZ8fmZmPsV8XmPd4x+Z7z26ryD/nxG5ve5u0S+sVb5zWMh79TWiPEH
b+O/ah9wdj3QM2KGs1babiPxmp6Z+PxKvsXe1muHjNQLUT/nWNlMve1tqh11
Y9RpOdfg1e3ynbnfd/C4wK5jEesrjZzv3v3f58TreLX6n9EX8HtGaR/iOeeW
K+PzcS/2nDylvra3TVvj+a8enz9ar3nbOMp3r2z7nI/ZGEfrs/36uoL3K1tl
9441uqNP0xtvjev4afH50j4Tn0eNx6Z65WMlhvTpRttRvp6ett68y1eJz+dY
1WjfI6/BdOWzXWfye+1M7GVHv+2TlJ5TrcnjjrX4zEy8XTwu0puL4P29mTmc
Pp/r7rlUu8SaHSNxsohBtdqHV8fnZbTtfaR9G2s3lUQbu9SOjWe9e8c3rgu9
dqbu0T61yvDKufiU+LzXA6Nj2dGGuyOuXPvOo22JUk6mWTouI+2GUq7wVxdj
cPotpZzKr2Y2BhjX0avF53esuTc7f173itHv3HEvnYnP598Q53Wk77nzGR7v
x6jOuzM+H/vxlGdqva/WKxf6996aL5GPRo7G5+O8ja4XWWpH533wHFojz8Rf
EZ9X/ZjbXPr/pZxBOf5c8urxeVH82MtE3BNr/SQvx15W4liMxudHj5n3EVpt
Ds/XdgWPz7fa8X5PvioW6P3dVo67lb70EaP3mhgT9/JFfB4lOSbcGw+eyc2B
ee8Yn89zfGdiCD529JS26FH+m0byEfixo/4+R47PlMpozuM7UveN5g7LY1Ez
c6Ly2MI7jJmuPtNcOyd3xOdjbkmr3jqyhmasfVxbIyn68PmePjoXKHgfQr+/
9z79pl5cuXcuVP5zOf6E+Hy+V75y+yrOyUr/KOapHs1pPNKmldwOfof7rOcg
fof4vMdDR+6P0Y+/c17HXdfy1fltZq3G5+PvRsfPdsbn474Z5cnL45XPLfk9
4klzlrxf0+rjRdtE12ftuOk3jqzNGlr3fx2j0eOU2/ijW60+Gm0vRj6ambVw
83VRmrMd7cvYv7juR+ZmvEN8Potrp9YmqeU8PCs+H8/u6VqonQ+vw6663n29
hto1eleOrZG1R+54vmi2z+r7vxLLU9l5Wl8/ys0r91ueJJepXp2d+4/YZ7aP
+CrxeZ9DPFuPv2PscSYOm+O21HvnGMnblXMNjbSlR583yjmPZsaw8n69w9zP
mXZu1IOttusd8XlR3deqs7x8zFzbUU/rXOt9KgP6u9iizs3jf3H/Hm2zxjy3
/KxwrNtWEs+lt7TOhc/798/5hPi8zw16Sr+4lP/lym31OMS9c9TMc6RPF2Uw
rp93iM97O7I39/PIuOdOd7Xd3jU+r/M+M963Kz4f5cnjmh6fv/Ka8uvgyLiA
6gbd13Nux1jfUv828/lex/TaoB4HL81R8njlkfh8tF1GRdsj/+4z88/7/XVk
LZz8mRETaz3HFnlvZsrNO8bno59XK5+ev8qdFZ8f4XPnn5R3z/vMV+dVbPH8
kFeuyTZyr/HXeN9mtl8ZdcbOdc+P8meKnrRfryznBe/xfvq75FJ4ihxne5f1
YWdz6Zb25wl9rR2Ojoc96f78TryPUuv/jc6Fd6PPG3mfa7Yvmb/jVeMvbiU+
3/rdd8Xne1bjB7ksxm+LuWLRNvUxJH2X6uKR2LzH5KON6/f+eF48l+dcXx3d
vJ337vH5J8+djzzAM/lmjvTd4hhe2b/yeNsrj3FGLNHL3zvE5/MYdmvN5Lif
1mJzep/Kc8zTjXziTn+fY5f6/73cHO6u63k1Pj8z5+Dq+HzrebGakWfYRpTu
+3fF570/tdofyPNRWtts3qPRsuHXc8717vX+jvzzo1RflOIapX3Y3daJbfa5
eZXxXqzAy8xoWX3H+HwvN1ZcF/kY3RWfnx1TuYpf6yM5AK4U5/jq8YzZ+Lzz
e8mRPlI4Y02ZHfuFOTP5kXMe8Vdt5z/V7NhHXNOqH9XWibXQ/DNKMZQWvyer
/aEy4XP6Yq2xmWeGZtoe2bvFHr1NOtJn8Hr7ndpJTzKaW2Ylt9foe3LO6Vn+
He9QTojPj+1LqX6P+4C3jfTfsc6rz3OY7TPq2uitF6v96V0bK+fi3ePzfk6u
jEufwcv1Sh8p2kJX5Q4VL++v3K9QGc33kHeIz+f+R7Sh8v062li1tmat71rK
Ld3qe47ES2baCzFOsMNKfD7yko3mOL0yPq9z4ved0TplR4wx9iOv43JHfN7n
na+OOXgfROXcz7eO68o8lHjv7Puib+nXhq5Pv6Z3xOdHx3S0P6VzWduHyG9+
dJ2UGTNtUO1Xfn59dF/fMT7fK5txbPM95Y74vI//PGEN6ODPezwpv5bEvf2O
2PCO+Hzvfj1zn8lrL8wgH/4zzKzb6WPuvbWTr1SaS7hru6p8ruQxmRlzGx3j
nDmWI/nyjsbX3y0+PzMelp+neNJ8ynDWdTfTLzgq59euyWVxpM00Gp/P19Ws
o+9/mk+Jz3tfeYeov71sRm5Tj2mo3tZr7noeZ+Vc7I7P155lbn33WfH5fP9/
5fnbEsdg9RnLq/sHHvd65edCo0zn6+Ad4vOS20R+zmI+ycxv9Di8ylyMY+q/
I3eYNrWffZ5KbL1Y9kz7Te2QM+Zd9trwLspPq79wR3xexybnAxhpf+2IMcZ5
z3WyH+Or5pB6+V/9TV6Oe2t7z44Te9kaiY9F7pXYj7gP5uf+er+3df9XORmJ
10VejFKfdlf7UZ+jzzjSl5vJae/1W5z30fzQ7xafj3t86/dEPKx2/7wqPu85
Wp4Um5coU0+LzfuzUnfMr3hafP4I4vP3m4kJPznPyDvE51fmYugcxBz53E/Q
/8/x+5H6VGUinvXVfcHbKpGv0D+ztCZN3scjx/Pd4vPeNm79Fp2/V3hW5azr
rtd328XL18iYo5+TkbmdozkrWn3mEUff/zSfEp/fmccj+h9ez6s+V+zgKWPp
oXUuejGDHfH50lzc3dvM3O8j6088UfThVuNWV/cPvF3ztP7wqCjTpXbeu8Tn
JfJ01a47/f7R+i4/sxpx/pLSOhy9NsPIvV/XerTl75w/H+Laq82/uWv+vIu+
a69+ORpjjPZbaczOr6mr2lw7vtP7bjVxfGdjcN6/Gb0X+71Ovy/fN/35hSP3
416+C92Da9fLrvajjwOvPhs2cm/Ub4njpT/jXHj9pf9uHY93i89HG6t23Hz9
v+zq+Hycp6fdq0fWZr1L6VmcKxGfx055LkqmshQ5//we96TY/DvwNtfu57lz
f2JHDrMcc+y1kXPfacZKTpGnyuv/5t+itpuObR5XefW5lE+VY3QjY+75emqV
x1Ic4Yr8Nu9wT/2U+HyUp6P7FTkZnpIXRcdb97Ja/6/2myOPQSk2tHv+vPZN
x2v3PMyVfu2RNdSfxud9qE6N+OOMqDevqMt8rtoT+52jVJfU4sXvFJ8X/cbW
86OxHmLPyryjvFZMq/6YjSE+IT7vbe5Sf+Su/PNZ3DtbfYojMUZvH5bO8d3x
+dWxTy9vu8ft/ZpcGecs5Y3y8qa6WvusPtHI5/u9qFcftNaVKJX5yAXUaueU
zPQ3Slpt0Mjd79dv/k0eu4/X6JjX2luvfE90UV/U6vg4x6U29JXx+YgTzK61
cYUoW0/L/xexzCvzIWY74vO1WM8Z8fnWczzE5+83s0ZMtIOeVl+8Oh8j6c1F
X5FjkLviN7lvNDqHaDWnwdE2zRPUns1u9dVe+fc+nbdjR/sSHsuJOIDuqVH+
9afOs+fBG+n/5+tpRh7DeofxnHeIz8d8y1bfbVc7KNY1e8r9OT+bt7Ll+MPu
+PyMmb6qrv/87FmP1xNPe254Vs5tE7HU1tzkrFdf7hTx1iflbJwV9Vuvf/cO
fa7I1xW/JdbEKNUhvTb1Sow1122tmMDIvf9p8+fF2yP5/rUzPj+y1X6Dn4da
vXIkxth7793x+dXr2K+VkRylM47k5I88NFktNj5yzEfGcEb4Puj+HuuyrYxB
1Nr4au+M9PdKbUYdjzzGH+2QUr0Tx6/U59Tn6j4S8aF3ic9Hf69W3uPaaj1/
dkV8vjcueaenlofR83OmI/H53tz/3fF534/S89W1funs2pNYN5q/vBdjwBpf
Z+OM2HzI4zA7zmWONbeuWS9ns+MD3h5dXQ/pKUbzMOkYEZc/15F8Bn7d1raY
v5fzVtTksjFTF+T4/DuUnVePz6t+7K2jKnHOjjzXFPOhrjjvs+uC1453799a
c5h25beZceZcsnfLPR99jXyeos4diWv0Ypq7RP18V87SXXRMW22rd4nPR96/
0vmqxelHj8vq8y6t9/l+9Mqy2ulPic/7M7L5OD9l/rxEzK12jlfrba+Ta+ct
r7N6hR3Xce676ZrZVc8eic9Hrtba/ubP6+VR93N4tM+b82C25tr3lMq+z+fp
fa63QbVf3pfJ+xbP8Ebes9zOLNWZsfbGO8XnY0566zqNOr3U/rojPv/E9shT
26exjsWdcj+8t7lePbU7Pu/1dGkeaK2fG89pX7Xeyidr9Qm9ffbqfZcn8nnt
Zx/fXG/syHEj/pmt6zXHHmd4PXLns0s7tH5LzJ+Kf2eM8jxeHlfn1ej61ef4
HHxdx9G2jfaxj4212oZH8ji90xhWeNX4vM67rm2d616f0PvJq/3HUmxe+6Df
qzoknr/eUefPzkU7Ep8v/dvO+Lw+o/V8Z+27R8tP9JtH+vDvlMPN242lMu3/
XosL+fE4s13kuYBfuX07Ejt4h/i8j4u3fmvO39BqT63G50ffN3NdR520w9H4
fMQ2W/lvnhCf9/PQ+vfZfY1YXet9ud6+wq7rOOcojT7J0Tliq/H5OJala6RW
lnWdt87PjrnzkUsn+mb6M+5rEauaicmNbL25enGMvY7Tfnm/I/8G389S2zTi
9N4vfaf8NtHWbsUp4niW2gJXxuejXfJET81v3asLrjBy7kvz5+N8t/ruO+Pz
vg+95+dK3+e5VF/1edOnG5lz6W2Bp+S1fQd+v7xi7OOsNVb9M1t1kveDZ+MP
3gZ59Zi1H4PSGHSeozETs9N7exv+2i+5Io+E91d6Y86r6wH7XL5Xz40RXjE+
H3M7R58Zj/O2cm/155n1p867vtefx1J587yiee2EI9tIOWsd75V/2x2fn7nW
VuLzUY+P5L31Y/vKzypGHKNVPnJsKN/XR54TPspjva/croh5Hr1y+Q7x+ZGy
FfIzbrtzlLx7fF5q8b4nxefjNbUysRJjnJ0HOVNXldrlM/2/HXNLgr43z50e
eeavZTX/fOQ/K4k5Lvn6ibqvNPfAY14rMSTPURnHpVSO9Nn6nTPH7Oi9zePz
2seRNk9e27pWdvxYvVN8Pn5LrUx6jKL1/ivi8/LU+clP3S+1me+e1x9jQL34
vK5bP47RHm7NP90Zn/f6o9bX6PWpo33F3O1zjORdyM9d75p3/en8+riibN8d
nxcfvx/9fr9nzswLjrnN2ifVeU+ITY+OUXh7eeZemOdx6P/r98cWf6/j8an1
qV8HV8Sxe+sBZz7XfqZ9N7vGbYi1iLU9LUa10ke+Kz7vuTxHy9XMumU1uW+t
a1739VZ8t5SP1OdK7pwP0TreK/92Rnx+dGxkNT4/Eqc48nzZk/Tmztdem+/t
3jY9Q6xBPBtDeqIdY26vEK/362m0HzISQ98Rn2/V+TP3/512xOdrnhSfl9Zz
StGmmmnvrc6JXv3smbjSGTnv8/1ndm6Q87boaHmP81zr78S9vXSOa+vuxHtm
jq1+s/bB21WRx71X5vXvo8fs6L1tNMdiSdwvRsrO6tiW+piRx/4p82vjmNXO
UbQ5ajHSq+PzeD0j10vpemjlVcqffbSt5u3uVjtqpI7xmNart6Ofxtv1rfLk
96qntuNH83o/oe9yJO/1qrPWj/TP7OWe8XphNCbi8crV+cSx3d1OyHMGa0av
yxKPw2c+f2LnuNBZ192R9mvJVWs9uJzLoSePh47so+dImSkveXy2d7++2ivM
n49xwJV61dekjLj6rDj3R9eH8d+wc35M63iv/NsZ8fnR8jD7eh+bG/3sM+q9
q3i+vtF7td/f/bzF8RipM1f2M2Jkq+2vyEUXz6fcqbYu6szWioupnuqN+V3B
r5HRe/fIc9yr8U5vp7XKgB9n4vP/bqSu27FO4mws09tso7G42EavEW+nz5aJ
1fZeT37eZHX+ih+PWh/Dn+eN+aSt17fuBTrmMY88RNt29vj4uG1+7q1X5mM/
RtpxR+/zvTKtffn/27sTHcdxGIqi///XA2LwgNeCFmrxVrkHCGa6qzpxvEg0
JVOtNnKmfvRsG1HOQTsdT+4o622XfZpigtH66uTn0bKaQ1f71+s/TuTnPUYf
XZfZftPzCKvbFu1GxJmen/n1fH82755dB+lJX8nPe+x351jHVfVtZ/eTzx3J
xLIeK83kU2vH8ek59Nm8e3Y90Rq1qa3xD88ZnZo/ftV1txO/lsp6UneN1ays
J+A5q8y/8fNq5hz3ePWJNmlkJT/fuzc6nZ/X89g6p2biCW+PY5t1b7wyf303
b+Yx2+nnQ3v7e+VnX8rPh2w79hfy84oTa3MZW7xd9n8zM8dvxoncvPgxi+/8
prazZqUudLRLHrM9+ezdqM54jbezo3mRs+eb16PueSoG/Uv5+Z0c30x+3vvC
zFpXq/dV/vz0rDIHetLsfJLVbYs4o3yOoPV5mXPAa5d4XZuV2Ki1NmfmnNd2
jNad2T12o3M6xnC8Hk9sT/xufIfYLr1GVmMkf70pZ6RaRJ7T0ji7/jxan/Pq
/Hycdzq+b3rW3ef3xbX79LwEp/Nd43RPzcXUcZuJLdXmZusT7sSZOs8z82Nn
+s2d+rq699V8N12jmbqgf1VZd6F3rXmbu7r2YLR5GjP3a+fpOTl30vh6NvYb
8fzOSPb+3/uFkZXY1OO3Uczt80Rm+4LaM6RP5+d9m3rfPbMuRIvOr8zz1m+K
m67m8ddd8Y6Ps8zsa5/DM+pHvR2fvYf1fTKbt7nDTJyrHPep9+sp1x2cfRbF
+wG/Tr1e+Z2xr86Dss2P77S7Hb39vfKzOD9bzwp8OT+/Mg9T59FMTBbHtLYW
yW4c5nmd2fY1fr+MYXwM7JSTuXkp89fx/2+5ny6t5OeljB+f6Cd8G7Lna6bG
1Ep+fqZ21VMxaG38vfb6Qn5+53Nm8gwr59jK8d29D/QYZPZaGG1j5j6xZXZu
v8+db+0LxSejdtXnSuy28bV9mjkXfXwncw+2KntOxzbX6p9FP5WpPTMb8/jx
f/t9Zhzj+H4+h6oXy9+Vny/vL654hnBFrSbBG/J3tWc2nlqDTbHgzH7RtTy6
19rNz+vazNYOWB3Xnm17tXZabXtX881fV7ajveO1ky+Mf+tzej3/q+v96bzp
XXzOROb60LXe4n1t9r1GbZfH9KNt9Pxeqw+p/UztzGg/tMYK9Lm99qy8b858
nyvNjIcF/93snFavjdL7N0/3YXfz9ivT16ht3MlBlOsm9PrrWl1E3+Ze++h1
IPz81nfo5ezj98uY601zIlRD4tSc7hP3+mVfOJub9xxhLU468axga7tr+1Hn
aWvOs2qIrurt79bPtE21n2X6iy/m58v+IRPfzoylx/v5fLo49zTXaBRnjFyx
zqq29dQ1cEVuvvbeK/cnd9nJz4eyPt9dNeLE71my+1ftaS/HsZKfnxk/8n32
RH7+L8yfvyM/7/HzTGw8e3xPrDvjcVv2Wsjkd7wfWsmNrNQjVf649ftx7Wbu
cT3mPjH/rZQ9Fz0f3qvXs9PnztZsUh3G2tySTE2NmesvzgH/nLfUt2kpYy99
3/LY3ZWfL7dl5zw5qTbe+4bcXW2dsqfGhBQXZWnbM2MwO/l5n8uTvV/dqQtX
5jN6WnkHXZdvne9ypXLuZE/ZfmXzJf4shR+rcrzr6brgd8iuyRBif2jf9WKk
bF6tXIctkysc9atlrcLW5+t3ynZ8dO17u1U+b9F6z977XBGvzSjHw0bbXj5T
npGpmzlTW/OvyM5FD8oJz7Rzpfh3Okcz/aHutcprYRQb+5i1f0b8/crY99vG
qk/3C6fmz6+u4ZBd/2A3jxbvG981/q1q8ERbXttW5Wlb30Pnxuozo7397fdB
8V+9dP3Njh9+OT8f/L5+VCPGf3eUb9F+KY+hjwXN3FOU7386Nx9281elq3Lz
UsvRv+2+YrddCeU92N1x1Uxf7s+hZca4s/lOXXvx3TNt4lP5DPLz/1P7NLrv
8usjO0+hvDfOXFcnYnB/j+w1mKk/5n3Cyvwdn4uczc/08k76nrN1HuOYn77W
suei5wtb+2AmLqiZzZ2J5xYyx3mnjdA2vq0fLOm8if+W+8bPO+bPM3++R8d9
ZQ2yTFu1mp9XbDp7v7rSxqzEmL3+9gvtxxW8H52dfz0z1tPKQ+zeF37N6hpe
vTbef6+1Lk1Zy3wU55RjpNFflcfPn0kctYX+fnp+oqzbXONrJ3ruxrctc2+k
NSee7kfKZwxnnk3I9oP+GTWeH/yVufNlPmHmNRPfq0ZD2a5m+payjrHOdW9z
a+9T1s/RKzNuVnufN82dv8LJdZtq82t6Zu57fQwyc+3HdsR57nOhezl50Xk3
Ou7ab7PzZZW7yM6f1/OMK9df+Hp+vjzuZY3P+Hkc5zIP3Pu+npsveR5hZY6b
56RPP+uxeg7U1J7vn3lllcfvbX1s9hnKkZXY5JRsDOO1ckcxb6tmclx7au/i
v/Fnxa4z5+VqTLFrdH8dfVKmxkXNV/Lznj/v7fvyPil7nMp5N5lc+ShOz/K2
ZuZ57FbfUtaxnb2uPU82c7x652lm7nz5TOLKHP6MmXNxVDt59/iv5ucljpU/
T9eymp/XufD2ufO1dYTLOFTXwewahzv153U+v63+vPIyb6s/r+dDn6w/r3Zn
tt5Ydnx1NT8f+2M2Nx9W2hjvA7LjFK36NqpB/0s8bvXX6Fqrjbm2rgE/Rq04
5633MFfYyRH22vjaeKbns/3vs/cUtWfgtB1l7i+zVn2mBubJf+cUOz/9rHkZ
+6vN6/UhZdxfPoNS4+uVqcZwvJS708/e1K9ebXVcLHuPVovZfK2TjEzcV9uW
1X/nlFP6hXa4FotfLfav2rKZa8+PbesY1tr/OI6Zz5iZlxZ8Xajsea34sxXf
1Y6Fxn5X2uyv5+dD+Vxa5tWi871VR26mhnbpynox3l/u5n53c/Mzxy54nPyW
uSfKLZd91GocMFur77Qyt+Sfr7XFlNebHR8fvWrzVVrKnKfa57vyLbFvWmt1
7Mquadczcw2Oan63vqO3Ja3jVrs/y+R44jNX1rnK5EUz/NzK5EKy/cpKLid4
WzvTJ+jflHGCjktvf3ou04+Zt8Oxn09cAzP5+dG5s9K3uN38fFAffkV+Pt73
7vpns3R+1bbT4zCdf3fNn8c3Rbs+cx+tfNpsnmDmmtecrZX2b3XujfqB7Gcq
BxFtdvy/rw/7dO7ubrV4IhMD1Z4hiVetH1feoPV+fl94qrbwm82Ou2aPSdC5
7HMn9Yr2Io7Fyjke9zxxvZR5cuX/47hl2pXaGpSZ+99Rfn70DIf616ev79H3
76nF063rxe+ZfQ62j6msxt1ftnrdZeKwoL4lrr24BuN8m41Ja2sqZbYl0670
+kjF538tN6++3Z/X8fbkju8b+93HxGbnKWbm/fl6sjPvr5xFrW30cT3Nr9Sa
rNqe7JworQnf0urfVu/p1P9l8/OjOKV0R34+xPePfV/rA9W2xzEYrYmsdn9U
36IVx/W2T8/Lzvav8Tm94+tz0Hfz262YdfY1w7f/yefSazVZe6/ZNtHjmqdi
rPhcPR/p10d2jFL8OohzLt7Xr714//icbLuSmVsy246sOJEb01hIbGvsA/UH
2udvmD8f15zOA41JxDaWOdqa3vhdb+7eKGZrXRPer+/OLfbaYqN6aL7duq8r
7y9m7utKXlN/5pxorQ2l79bLDamOZGueWDnusjtWtVPrxfm+WnUiP+/b07Ly
nZWLeHNuXt+rNw6nc1OxUXb+B/n536P+INu+6B5s5nm62fx8fMaoBp/mb/p9
X/D+bbaNiX0wO2dDfbj3Ib80j/QuHn+0cok+p+HX8oW4nmoA/Ep99eDtaa1d
81j16TELPE/zjv7y+KjqEZT3zle2C/GZnvfdudbi3mF03z07HlTWDSufL9Hf
xz18xGXxfWJ/+XN3J/KOo9o3PcqfxUv5Ij/OmZhiNn95Z473BO8PWvvDz4Us
zRmNc2AldvPcp8bPlPfTc7hf76d+Ye6Pz718cx4mY2V92F8T13otl727dviJ
/Lz4mHj5esu9/ihO33m/J2uJzPa/4teen0vqF2r8mcTR3PiyVolysl67anZb
s21EfEY5RyRT2zUjOwZ46pV9ZkCx41v7BK/Rkrn38XNrNj//1+Y9oU33Ihmr
c0dX2p+ROL/Lurzl6y/Hsb/G44XMc/kA9vlcoVZstJKPAb5ud82zHtWOUG5R
c9BOPE8d7336PsfnFGteaGzv3Wttn6grXBt/mRk70NzQK+cIPBXneH/QMjsH
VrWHsuti9ngdktV8AHAC+fk8H9fcnSOb2d/xebPznst50ydrkO/ydvlU3aHV
ujKn7DxL4+eT4oo4XrVzy8df4rzJzrPwfH7Zx6yMJcy2EapzVY4T7IynnJw/
33PqmYE30FjN7HEXja+Mrtv4+dPr3eE+0Q5l+0LNa1hpp6++FmtjmTP1d/B+
HuvWrK4hA6DNa1y3rNYzAL5O88FPiZgs7ic1b+JLz+pozvlK3HWqfvLJZ4A9
H/OWeZKi9eru5vMLa3zMKnNdxO9ctXZJOef1zfPv8PeQn5+j2jE712j0IVe2
1dGmXFV7f0cmTo99M9vHPpWjP1HnSnXwfP1zP7c0RqN1klZjLdXDWa3HrHZi
te6a1zTffe7o7vz829d57YnzRbn1nTj9bW0J3iG7hu9Obj6srg87o1z/irnz
f0svP+9rin29zQfepJyDUuNzSADgKSvzInuoV/ivXn6+jMFH+03ralxJdaO/
NM6Fv4H8PO6SidNn1xkUz5XH+1+ZT/Q56adqeUV+wMd9op9Sv3Cqb9f6gysi
v7+7LbGfTuyr2A6tp3gl1Tf8Ku0n5qPhCnF9ZK/nOA932447xohiO+9cxx73
8VjX23Xl5j0/z9gMsC+z3rKvJcU9KAD8Xa2xWOXmPQ5jXhh+Gfl53CETp+tZ
sNV74/gMrxl2RT2/ch0/+g8AAN7N689rjU49s6Y/U2MDOMfnzdTmOvjajpGb
4boDgL/L+wTNS9fz/fFn1bdhLRL8OvLzuEMmTldufTfnrXXqr1ijUvP7vzyv
GgCAX+Nzs8q1hLxWLIA9cT15rYKImfWKGD3uCRTzr66LAwD4jsjvlGs9+XxK
X2cP+GXk53G1Xpzuc9h26psDAACUNOavOnIR68YYvj+rx30hcI7WvWm94jqM
uZLk5QHg71McFm1+xFu12u4as716fTng7cp6HcBpozjdX63aNwAAADM0L34U
W2gOAfeFAAAAZ0QePmKsXu2ByNv36iwAv8TXaiA/DwAAgK/L3u95bXrWlAEA
ANjnNeXjGcYW1UGOOfTAL4t7F19PM15xnwIAAAB8le4LRzXlNU+FOSoAAABn
qE5HL76KvD3PMOLXqc5m78V9CgAAAL7I58+35sX73C5qYQMAAJyhGKs3L145
/FiDsDfHHgAAAADwTZqPEveGcZ/o69Jr3nz8jNw8AADAOZFvj7y75v5G7KU4
LGIy1fGIn5GbBwAAAIC/K3Lv8cx0zNHy9ejj76jpCAAAcJ2ItSLm8hgsYrL4
O+ZHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwrP8ATi5t
aw==
"], {{0, 350}, {1512, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{488.88671875, Automatic},
ImageSizeRaw->{1512, 350},
PlotRange->{{0, 1512}, {0, 350}}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Z", "[", "s_", "]"}], ":=",
FractionBox[
RowBox[{"40", "*",
SuperscriptBox["10", "3"]}],
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
FractionBox["s",
RowBox[{"30", "*",
SuperscriptBox["10", "6"]}]]}], ")"}],
RowBox[{"(",
RowBox[{"1", "+",
FractionBox["s",
RowBox[{"2000", "*",
SuperscriptBox["10", "6"]}]]}], ")"}]}]]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Rf", "=", "511"}], ";",
RowBox[{"Rg", "=", "255"}], ";",
RowBox[{"Rb", "=", "29"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Al", "[",
RowBox[{"s_", ",", "Cg_"}], "]"}], ":=",
RowBox[{"-",
FractionBox[
RowBox[{"Z", "[", "s", "]"}],
RowBox[{"Rf", "+",
RowBox[{"Rb",
RowBox[{"(",
RowBox[{"1", "+",
FractionBox[
RowBox[{"Rf",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"s", " ", "Rg", " ", "Cg"}]}], ")"}]}], "Rg"]}],
")"}]}]}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"db", "[", "a_", "]"}], ":=",
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[", "a", "]"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"db", "[",
RowBox[{"Al", "[",
RowBox[{
RowBox[{"2000000", "*", "\[Pi]", "*", "f", "*", "\[ImaginaryI]"}], ",",
RowBox[{"10", "*",
SuperscriptBox["10",
RowBox[{"-", "12"}]]}]}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"f", ",", "1", ",", "1000"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Detailed\>\""}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{
RowBox[{"180", "/", "\[Pi]"}], "*",
RowBox[{"Arg", "[",
RowBox[{"Al", "[",
RowBox[{
RowBox[{"2000000", "*", "\[Pi]", "*", "f", "*", "\[ImaginaryI]"}], ",",
RowBox[{"10", "*",
SuperscriptBox["10",
RowBox[{"-", "12"}]]}]}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"f", ",", "1", ",", "1000"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Detailed\>\""}]}], "]"}]}], "Input",
CellChangeTimes->{{3.750439811350134*^9, 3.7504401439379463`*^9}, {
3.7504402338826513`*^9, 3.7504402873594933`*^9}, {3.7504403264550943`*^9,
3.7504403803962603`*^9}},ExpressionUUID->"0e12fa40-9525-4035-856f-\
d893670843ea"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV0Xk4VfkfB3B7drrW69jJFmML90q+n3NqUqLFUgnNkLK1IGUsiUQRrtyE
LC0KI4OU+qGZjlTEJMmWjGvPEpeLSFPm/P54P+/n9d/7ed5avqdcjgrw8fHl
U/l/xyydLv8wfcHeXos+2WVAQOFE63NnTx/0j9DuhKeUH7OUp/U9Q9E7CZpg
EWVixH5N3jMe2ZkPVJ+iLCrlkizheRVNBt5qX0d5+rZnm4jnbWRy33HGQp8A
7+ODIUKeD9DLYuOp0xsIkL8eHd8/9gDlcKL4D1BueaaY+SikGhkGcFaZlK3l
nB/6JT1EPs1n2Gu6BMjW1S69eFCDlJtuHEym/GIdOypRtA5N8C4rZ+sQcP2d
NiHo2YD2JFVk39Ai4OTxTJPtxQ3IYYf3/FnKDusE6MnzDajzh6uOK+UVuyGu
9OXnqDk4TEaCskfpzQKVmkZkyukTjNQkQPW86ldzmVdoTY/OcNYgoMhYserX
xhbk8sYxv0uVgJimxLwi6VbUaLLrfjllN9+lpHGPVrSUQktLoCyU0+l9fK4V
OdRubjajfEyQLfGb2hvkGNallIwRYNQn48+KeIsCy1N5ZioE9DYKyXAUOpDP
hZfgpUTtr1TVFGB2oIcX4wPNKAvlbTLf4NWBTHMjjwpRNg3zcw2+04F2E2e6
7ysSkKT5Inv5p/fIM+5L9ooCAZbnEjRld3QiC8us08nyBKRbC1jgUd0oH0wP
XVpPgK62yla/gm5E2+h03Z1ynZSF2yWyGx0X1rqlQ3ls1OfsG5EeJObNVH0m
S4Adu6HOg92DImWlHizIEDDJjdsaVt6LXiUq6rpKE7Dt9zW3ooE+dEg9jjMp
ToDj2qUFBf6PiPMHnllNea+7bOZlnY8oaXBYOpqyN7/W2xMBH9GxYeGjEpTP
ehA7GbyPSCuEfd5QjIBSscQtb4T/QRK+rK2e6wiQCBLXWzbmIJrc8wq2IAE0
MvNF4B4O4k6s2btTVlbEjvSHctDcO26mImXd5xtvNTzmoDpF5cQcAQLU0/Sk
tmsOot92jaTm8hNgM+ZwSbZsEJ3f1/Qvaw2HwKyU6Ht/DiHh1NIpp284fMaz
E9zah9C3edurfJRPzhZdERwZQnbY94mHqziEOfyZ5yM6jL51fCmjU475yq1X
cx1G+k38oUMrOGR4u/+bNTGMltUEmny+4PB4g+a5JLlRVG7Nf1NnHgdGh3Gi
ld4oOuKuMPj3HA71scy0UcYoyrRCr89QJntcCojDo8hYsiTzFReH18mJf/4o
HUXdIxe+HpnFoX9m6vtZ+zHk9LSzM20aB4HHNbH+geOo7qtCcd4YDrmhYW49
UeNoykBhAlE2MzE1ckgdR0cDVLpGRnE4fLe0S69yHL2t2VRpRLk+M894fHEc
uQxlej0axiH8VHyfX9wnZH9qzfcJB4dxA2dr3+wJJPDiukvUBxxa80ZnvF5O
oVivCI2xVhyGewNjiN4pxCzrPB1AeUWBK24wPYVUGLV7p1tw0M34qr8gO43W
qdXd4b7GIfaitG+y1zTi/iFSyGvCweIEo7tmYRot7hS+N9SIQ4596l/S2jOo
sq011aceh2NDliwylotk4urOdZXiUOMaOup8lYsinbrUN1MWelXB/FjERfea
Cm1uleBwu8xwdKmZi470LbYFFOMwW8vKzxKbQ50fqq8sFOFgkJA43+I6h8LP
DC/NFuJQqBCaZzUxh+qWjN2jr+GQbLuDK76eh7jHDYZ7z+Fg++0vvmo6D013
E+/0KH+ut6J5aPNQmVgxIzwGh71bdKxKLHkog3bwlFQ0DorwI2rrfh7Kyfp8
hvkbDnd/fiQSk8dDhzRCHkWEUf/u1VSf2bCAnle/8rtyDIflYytOb20X0UWO
711BZxwCAt7bmm9bRF6TjwcwJxz6AisM2M6L6HNwcaDlLhyeHvcTOvDrItLY
Hxzy604cLoS11w8kLqJizHBz9c84SMaWGs22L6JFejJ7kz0O2lkHRaX8l9BQ
jmNn9U847G78X6Mj+wuadw0XvyKFwxaB6DlO4woqOu0Q8boJwGpi6+KJyVU0
cGhHzL5IAMUfqusfbvmOZl6PrUjQAVhflkfWB62hO//0SWcFIYhkzX9iD/PB
GZYc/XKsPZhGBO3MExcAwk+YTU/cAuZ7RxMr1QXhZdMO88l0O9DHx3drOArB
cgVxJCZiMwTqTPLyfITh0yaWtUygLdxSC9cJzxABYVrXQMpmJngGX3jWXLsO
+pUntudKMsC37Kq10VtRIMV1C9Y+W8NhfkPbT9/EwNE4+c3TKiso3tmg/EBe
Avji/d3mEzdB2Fi/77K+JPj/USKledgSLHLjmLkuUkAGdRy1ULEAe/sN0w6B
0tDXY35bedIM0Ld9hi7ZMuBlHnbQ0doUhoXjAz//IgtPc5L7hG4aQ0vSh43W
U7KwcY++wx5jIyiXO/vIJG49yH/PqOmN1IdNdHbZRkka9D8J6LozoQuxzaHd
/lk0+PEuNzzaXRsaE6417zOSA94tvtZHU+pQ8cTGgKiRA9tBiwBXLzqwl9V3
D+6Sh6qf/Aeuy8uBelXS0MVeefDrVgpl94pBMK2qzN9XAapn5Tvc7FZRdZya
7cqyAjjl9MVqVDQ/u+kvYcNKUATes8Nz6jp85KVDW1bfqyiBY8fvMjGXZEnz
ZbOF/ZVK8DefYjUZQifjJe95DDKVoY5eaKdtqEW2mngnKbUrQ/PTCKUZRz2y
vilL053aJf9eJzfeZyN5QiJjrn2MDnfQYglnnxmp4tmWtBqlAtWKDRNjey3J
EzppKUYiGOzv2Td7ys6aNDpQJJ4jikFofz63bqc1OZFSmyIsgYHL9ElF0QPW
pC9vLGVQBoO5VvX20lBr8mCD/ZXrdAwKfN+/FyyxJrf9MndFwASD2GRPVQ2a
Dama55rW54qBQZtS/vCkDdnXFii1Yz8GbYra8iHLNmS2QFxazUEMNN3LU9eE
GCQtqDwtwxuDWreUKF1NBinKFE7f7o9B/6qPQdJ+BrnQ/Ti9OgoDixsnGksa
GWSV+BtpzXMY3DEqqHF7xyBP2o+kp53HYBT3yBLkMMiJezKsgIsYpIc+VPZf
ZZAD4QEs9XQMnrimS/1sziTzS2NlUjMwuNbU4MiPmKRH/zXW10wMCnu/BD9z
YpKdWxtYndkYiEwVuOMBTDIzokeGuIHBbNV9TPgsk9xzf4ZVmY+B2D0e2ZLA
JCU5grJqNzGYD4JtmVeZZAtNJSPlNgbdGb53PW8yyf8AoT5kzw==
"]]},
Annotation[#, "Charting`Private`Tag$49411#1"]& ]}}, {}, {}}, {Ticks -> {
Charting`ScaledTicks[{Log, Exp}], Automatic}, GridLines -> {
Charting`ScaledTickValues[{Log, Exp}], Automatic},
FrameTicks -> {{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}}, DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None}, DisplayFunction ->
Identity, DisplayFunction -> Identity, Ticks -> {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Automatic},
AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines -> {{0., 1.6094379124341003`, 2.302585092994046,
3.912023005428146, 4.605170185988092, 6.214608098422191,
6.907755278982137}, Automatic}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"ClippingRange" -> {{{1.4097459753024768`*^-7,
6.9077551380075395`}, {-25.62249209791556, 36.31902803160709}}, {{
1.4097459753024768`*^-7, 6.9077551380075395`}, {-25.62249209791556,
36.31902803160709}}}}, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0},
CoordinatesToolOptions -> {"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> Automatic,
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {Automatic, Automatic}, GridLinesStyle -> Directive[
GrayLevel[0.4, 0.5],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange ->
NCache[{{0,
Log[1000]}, {-25.62249209791556, 36.31902803160709}}, {{
0, 6.907755278982137}, {-25.62249209791556, 36.31902803160709}}],
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],FormBox[
FormBox[
TemplateBox[{
RowBox[{"db", "(",
RowBox[{"Al", "(",
RowBox[{
RowBox[{"2000000", " ", "\[Pi]", " ", "f", " ",
"\[ImaginaryI]"}], ",",
FractionBox["10",
SuperscriptBox["10", "12"]]}], ")"}], ")"}]}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[