-
Notifications
You must be signed in to change notification settings - Fork 0
/
eqModelTransformer.yaml
104 lines (76 loc) · 2.98 KB
/
eqModelTransformer.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
seml:
executable: eqModelTrain.py
name: eqModelTrain
output_dir: logs
project_root_dir: .
slurm:
experiments_per_job: 5
max_simultaneous_jobs: 6 # Restrict number of simultaneously running jobs per job array
sbatch_options:
gres: gpu:1 # num GPUs
mem: 35G # memory
cpus-per-task: 96 # num cores
time: 1-08:00 # max time, D-HH:MM
fixed:
init.model_chosen: 'main' # ['main,'nofeatures']
init.seed_value: 1 # seed value for everything (still something makes the run not deterministic atm.)
init.patience: 15 # patience while running
data.doFT: True # do the SFA as preprocessing
model.useEmbed: False # currently always false and a mapping is used as embedding
model.useSaves: False # use already trained models rather than train again
model.steps: ['max'] # Which steps to try out for LASA. ['max', 'sum'] #only those two are supported
model.layerCombis: ['hl'] # ['lh', 'hl'] as alternative for LASA combination steps
model.localAvgThresholds: [[0.5,0.5],[1.0,1.0],[1.4,1.4]] # thresholds for lasa
model.header: 6 # number of transformer heads
model.numOfAttentionLayers: 2 # number of transformer layers
model.dffFaktor: 0.5 # dff size in ralation to dmodel, e.g. if dmodel = 16 and dffFaktor = 0.5, dff is 8
model.transDropout: 0.0 # transformer dropout. Not suggested.
model.lastDropout: 0.4 # dropout at the end of the model
model.gcnNodes: 32 # number of gcn nodes
model.finalLayer: 256 # final dense layer size
model.filters: [16,32] # number of filters for the cnn part
model.cnnKernal: 25 # kernal size for the cnn part (make sure it fits the ncoef size)
model.modelN: 'transformer' # Current file is optimized for the transformer model. Alternatives: 'old','bloem'
model.doAbstract: True # do lasa after training (only for transformer)
model.doMixedLasa: False # switch dimensions and apply lasa again
model.epochs: 200 # number of max epochs
grid:
data.network_choice: # which of both networks to train
type: choice
options:
- network1
- network2
model.doStations: # if doStations is false the model uses the following shape: (time points, features * stations) else (stations, features * time points). This is important for lasa in the sense of what dimension to reduce. Only works with the transformer
type: choice
options:
- True
- False
data.random_state_here: # state for data splits
type: choice
options:
- 1
- 2
- 3
- 4
- 5
data.nbins: # number of symbols used for sfa
type: choice
options:
- 5
- 6
- 7
data.ncoef: # number of coefs used from the SFA. This also is afterwards the size of the last dim times the number of features
type: choice
options:
- 125
- 250
data.iLen: # length of the time window used for the prediction. 1000 = 10s
type: choice
options:
- 1000
- 900
- 800
- 700
- 600
- 500
- 400