-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_neuron_effect_per_layer_rumour.py
163 lines (135 loc) · 4.27 KB
/
compute_neuron_effect_per_layer_rumour.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""Script to generate a plot with effect per-layer.
Requirement:
You have to have run `compute_and_save_neuron_agg_effect.py` for each of the models you want
to investigate. That script will save an intermediate result csv. To reduce computational
overhead, this file expects those intermediate result files.
"""
import os
import sys
import argparse
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_context("talk")
sns.set_style("whitegrid")
parser = argparse.ArgumentParser(description="Run a set of neuron experiments analysis.")
parser.add_argument(
"-type",
type=str,
default="single",
help="""which type of drawing""",
)
parser.add_argument(
"-model",
type=str,
default="twotier",
help="""which model""",
)
parser.add_argument(
'-res_folder',
type=str,
help='which result file to plot'
)
opt = parser.parse_args()
def get_top_perc_per_layer(df, n=10):
"""Get avg indirect effect of top n% neurons"""
num_neurons = int(df.groupby("layer_direct_mean").size()[0] * n / 100.0)
return (
df.groupby("layer_direct_mean")
.apply(lambda x: x.nlargest(num_neurons, ["odds_ratio_indirect_mean"]))
.reset_index(drop=True)
.groupby("layer_direct_mean")
.agg("mean")[["odds_ratio_indirect_mean", "odds_ratio_indirect_std"]]
.reset_index()
)
def main(folder_name="results/20191114_neuron_intervention/",modelname):
# For plotting purposes.
cmap = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]
# Load results for all the models.
neuron_effect_fnames = [f for f in os.listdir(folder_name) if "neuron_effects" in f]
modelname_to_effects = {}
for f in neuron_effect_fnames:
modelname = modelname
path = os.path.join(folder_name, f)
modelname_to_effects[modelname] = pd.read_csv(path)
plt.figure(figsize=(10, 4))
color_index = 0
for k, v in modelname_to_effects.items():
# Get top 2.5% neurons (empirical choice, you can vary this).
vals = get_top_perc_per_layer(v, 2.5)
# Plot a line for mean per layer.
plt.plot(
vals["layer_direct_mean"].values,
vals["odds_ratio_indirect_mean"].values,
label=k,
color=cmap[color_index],
)
# Fill in between standard deviation.
plt.fill_between(
vals["layer_direct_mean"].values,
vals["odds_ratio_indirect_mean"].values
- vals["odds_ratio_indirect_std"].values,
vals["odds_ratio_indirect_mean"].values
+ vals["odds_ratio_indirect_std"].values,
alpha=0.08,
color=cmap[color_index],
)
color_index += 1
plt.xlabel("Layer index", fontsize=18)
plt.ylabel("Indirect effect of top neurons", fontsize=18)
plt.ylim([0.995, 1.05])
plt.yticks([1 + i / 100 for i in range(0, 6)], [str(i / 100) for i in range(0, 6)])
# Need to reorder legend labels to increasing model size.
# Requires results for all 6 models, ignore otherwise.
try:
handles, labels = plt.gca().get_legend_handles_labels()
# Modify to fit the order you are getting.
order = [3, 5, 2, 4, 0, 1]
plt.legend([handles[idx] for idx in order], [labels[idx] for idx in order])
except IndexError:
plt.legend()
sns.despine()
plt.savefig(
os.path.join(folder_name, "neuron_layer_effect.pdf"),
format="pdf",
bbox_inches="tight",
)
# Now do all available models individually.
color_index = 0
for k, v in modelname_to_effects.items():
plt.figure(figsize=(10, 4))
vals = get_top_perc_per_layer(v, 2.5)
plt.plot(
vals["layer_direct_mean"].values,
vals["odds_ratio_indirect_mean"].values,
label=k,
color=cmap[color_index],
)
plt.fill_between(
vals["layer_direct_mean"].values,
vals["odds_ratio_indirect_mean"].values
- vals["odds_ratio_indirect_std"].values,
vals["odds_ratio_indirect_mean"].values
+ vals["odds_ratio_indirect_std"].values,
alpha=0.08,
color=cmap[color_index],
)
plt.title(k)
plt.xlabel("Layer index", fontsize=18)
plt.ylabel("Indirect effect of top neurons", fontsize=18)
max_y = int(np.ceil((max(v["odds_ratio_indirect_mean"]) - 1) * 100))
plt.yticks(
[1 + i / 100 for i in range(0, max_y + 1)],
[str(i / 100) for i in range(0, max_y + 1)],
)
color_index += 1
plt.savefig(
os.path.join(folder_name, "neuron_layer_effect_" + k + ".pdf"),
format="pdf",
bbox_inches="tight",
)
print("Success, all figures were written.")
if __name__ == "__main__":
if opt.type == 'single':
main(opt.model)