-
Notifications
You must be signed in to change notification settings - Fork 0
/
earlystopping.py
60 lines (55 loc) · 1.75 KB
/
earlystopping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import torch
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.accs=0
self.F1=0
self.F2 = 0
self.F3 = 0
self.F4 = 0
self.val_loss_min = np.Inf
def __call__(self, val_loss, accs,F1,F2,F3,F4,model,modelname,str):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.accs = accs
self.F1 = F1
self.F2 = F2
self.F3 = F3
self.F4 = F4
self.save_checkpoint(val_loss, model,modelname,str)
elif score < self.best_score:
self.counter += 1
# print('EarlyStopping counter: {} out of {}'.format(self.counter,self.patience))
if self.counter >= self.patience:
self.early_stop = True
print("BEST Accuracy: {:.4f}|NR F1: {:.4f}|FR F1: {:.4f}|TR F1: {:.4f}|UR F1: {:.4f}"
.format(self.accs,self.F1,self.F2,self.F3,self.F4))
else:
self.best_score = score
self.accs = accs
self.F1 = F1
self.F2 = F2
self.F3 = F3
self.F4 = F4
self.save_checkpoint(val_loss, model,modelname,str)
self.counter = 0
def save_checkpoint(self, val_loss, model,modelname,str):
'''Saves model when validation loss decrease.'''
# if self.verbose:
# print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(self.val_loss_min,val_loss))
torch.save(model.state_dict(),modelname+str+'.m')
self.val_loss_min = val_loss