-
Notifications
You must be signed in to change notification settings - Fork 0
/
m1.tex
45 lines (42 loc) · 1.62 KB
/
m1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\title{MATH 4338 Main Problem 1}
\date{}
\author{Andy Lu}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm}
\newtheorem{theorem}{Theorem}
\begin{document}
\maketitle
\begin{theorem}
If $a, b \in \mathbb{R}$ and $a \neq 0$, then there is one and only one
number $x$ s.t. $a \cdot x = b$. The number is given by $x = ba^{-1}$.
\end{theorem}
\begin{proof}
Assume $a, b \in \mathbb{R}$ and $a \neq 0$. Let $x = ba^{-1}$. As $a
\in \mathbb{R}$, $a^{-1}$ is a number by the existence of a reciprocal
axiom. By the closure property, $x \in \mathbb{R}$. Using the
axioms,
\begin{align*}
ax & = \\
& = a(ba^{1}) & [\text{by substitution}]\\
& = a(a^{-1}b) & [\text{by commutative property}]\\
& = (aa^{-1})b & [\text{by associativity}]\\
& = (1)b & [\text{since } a^{-1} \text{ is the reciprocal of } a]\\
& = b & [\text{since } 1 \text{ is the multiplicative identity}]
\end{align*}
Hence, $x=ba^{-1}$. Assume $y$ is a number such that $a \cdot y = b$.
Using the axioms,
\begin{align*}
ay & = b & [\text{by assumption}]\\
(a^{-1})ay & = (a^{-1})b & [\text{multiply by} a^{-1}]\\
(a^{-1}a)y & = (a^{-1}b) & [\text{by associativity}]\\
(aa^{-1})y & = (ba^{-1}) & [\text{by commutativity}]\\
(1)y & = ba^{-1} & [\text{since } a^{-1} \text{ is the reciprocal of } a]\\
y & = ba^{-1} & [\text{since } 1 \text{ is the multiplicative identity}]
\end{align*}
Thus, $y=ba^{-1}=x$ and $x$ is unique.
\end{proof}
\end{document}