-
Notifications
You must be signed in to change notification settings - Fork 0
/
m3.tex
35 lines (31 loc) · 1.11 KB
/
m3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\title{MATH 4338 Main Problem 3}
\date{}
\author{Andy Lu}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm}
\newtheorem{theorem}{Question}
\begin{document}
\maketitle
\begin{theorem}
Suppose $f$ and $h$ are continuous at $a$ and $f(x) \leq g(x) \leq h(x)$ for
$|x-a|<k$. If $f(a) = h(a)$, show that $g$ is continuous at a.
\end{theorem}
\begin{proof}
Assume $f, h$ are continuous at $a$. Assume $f(x) \leq g(x) \leq h(x)$ for
$|x-a| < k$. Lastly, assume $f(a) = h(a)$. \\
By the definition of continuity,
\begin{align*}
& & \lim_{x \rightarrow a} f(x) = f(a) &
& \lim_{x \rightarrow a} h(x) = h(a) & &
\end{align*}
Then by the Sandwich Theorem, $\lim_{x \rightarrow a} g(x) = g(a)$.
Pick $x = a$ for $|x-a| < k$. As this inequality holds for $x=a$,
$f(a) = g(a) = h(a)$. Furthermore, this means $g(a)$ exists. By the limit
definition of continuity, since $g(a)$ exists and
$$\lim_{x \rightarrow a} g(x) = g(a)$$ $g(x)$ is continuous at a.
\end{proof}
\end{document}