-
Notifications
You must be signed in to change notification settings - Fork 0
/
m6.tex
62 lines (59 loc) · 2.61 KB
/
m6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\title{MATH 4338 Main Problem 6}
\date{}
\author{Andy Lu}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm}
\newtheorem{theorem*}{Question}
\begin{document}
\maketitle
\begin{proof}
Suppose $f$ is uniformly continuous on $I_1$ and $I_2$. Let $\epsilon >0$.
Then, $\exists \, \delta_1 > 0$ such that $\forall i,j \in I_1 \, \text{
if } |i-j| < \delta_1 \text{, then } |f(i)-f(j)| < \frac{\epsilon}{2}$.
Similarly, $\exists \, \delta_2 > 0$ such that $\forall i,j \in I_2 \,
\text{ if } |i-j| < \delta_2 \text{, then } |f(i)-f(j)| <
\frac{\epsilon}{2}$.
Consider $I_1 \cup I_2$, where $I_1 = [a,b]$ and $I_2 = [c,d]$. If
$c - b > 0$, pick $\delta = min\{\delta_1, \delta_2, (c-b)\}$.
Otherwise, pick $\delta = min\{\delta_1, \delta_2\}$. As
$\delta_1$, $\delta_2$ $> 0$ and $c-b > 0$, $\delta > 0$. Note, $\delta \in
\mathbb{R}$. Suppose $i,j \in I_1 \cup I_2$. Then there are 2 cases:
\begin{description}
\item[Case 1: $I_1 \cap I_2 \neq \emptyset$] \hfill \\
Let k $\in I_1 \cap I_2$. Then,
\begin{align*}
|i-j| =& \\
=& \quad |i-k + k-j| \\
\leq& \quad |i-k|+|-1||j-k| \qquad \text{[by Triangle Inequality]} \\
=& \quad |i-k| + |j-k| \\
\end{align*}
As $k \in I_1$ and $f$ is uniformly continuous on $I_1$, then
$|i-k| < \delta_1$ and $|f(i) - f(k)| < \frac{\epsilon}{2}$.
As $k \in I_2$ and $f$ is uniformly continuous on $I_2$, then
$|j-k| < \delta_2$ and $|f(j) - f(k)| < \frac{\epsilon}{2}$.
Suppose $|i-k| < \delta$ and $|j-k| < \delta$, then,
\begin{align*}
|f(i) - f(k)| + |f(j) - f(k)| =& &\\
<& \quad \delta_1 + \delta_2 &\\
=& \quad \frac{\epsilon}{2} + \frac{\epsilon}{2} &\\
=& \quad \epsilon &
\end{align*}
\item[Case 2: $I_1 \cap I_2 = \emptyset$] \hfill \\
Without loss of generality, let $i \in I_1$ and $j \in I_2$. Suppose
$|i-j| < \delta$. As $|i-j| \geq c-b$, there are two cases:
\begin{description}
\item[Case 1: $\delta = c-b$] \hfill \\
This is a contradiction because $|i-j| \geq c-b$ and $|i-j| < c-b$.
\item[Case 2: $\delta < c-b$] \hfill \\
This is a contradiction because $|i-j| \geq c-b$ and $|i-j| <
\delta < c-b$.
\end{description}
Thus our hypothesis is false and the conclusion is vacuously true.
\end{description}
Thus, f is uniformly continuous on $I_1 \cup I_2$.
\end{proof}
\end{document}