-
Notifications
You must be signed in to change notification settings - Fork 0
/
m9.tex
73 lines (71 loc) · 2.62 KB
/
m9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mathtools}
\title{MATH 4338 Main Problem 9}
\date{}
\author{Andy Lu}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm}
\newtheorem*{theorem}{Question}
\begin{document}
\maketitle
\begin{theorem}
Given the function f defined on $I = {x: 0 \leq x \leq 1}$ by the formula
\[
f(x) =
\begin{cases*}
1 \quad& if $x$ is rational \\
0 \quad& if $x$ is irrational
\end{cases*}\]
Prove that $\underline{\int_{0}^{1}}f(x) \, dx = 0$ and
$\overline{\int_{0}^{1}}f(x) \, dx = 1$.
\end{theorem}
\begin{proof}
Let f be defined on $I = {x: 0 \leq x \leq 1}$ by the formula
\[
f(x) =
\begin{cases*}
1 \quad& if $x$ is rational \\
0 \quad& if $x$ is irrational
\end{cases*}\]
Let $\Delta$ be a subdivision of $I$ s.t.
$0 = d_0 < d_1 < \ldots < d_{n-1} < d_n = 1$ with the corresponding
subintervals denoted $I_1, I_2, \ldots I_n$.
By the Archimedian Principle,
$\forall \, I_k \, \exists$ a rational number and an irrational number in
$I_k$, for $k = 1,2,\ldots n$. Let $m_k$ and $M_k$ denote the g.l.b and
l.u.b of f on $I_k$. Since the range of $f$ on $I_k$ contains only 2
values,
\begin{equation}
\inf_{I_k}f = 0 \qquad \sup_{I_k} f = 1
\end{equation}
With respect to $\Delta$,
\begin{align*}
S^{+}(f,\Delta) =& \sum_{i=1}^{n} M_{i}(d_i - d_{i-1})
\tag{by definition of Upper Darboux Sum}\\
=& \sum_{i=1}^{n} (d_i - d_{i-1}) \tag{since $M_i = 1$}\\
=& (d_1 - d_0) + (d_2 - d_1) + \ldots + (d_n - d_{n-1})
\tag{by definition of sum}\\
=& d_n - d_0 \tag{by combining like terms} \\
=& 1- 0 \tag{by construction of $\Delta$} \\
=& 1
\end{align*}
As $S^{+}(f,\Delta) = 1$, for $f$ on $I=[0,1]$ and subdivision $\Delta$, the
g.l.b. of $S^{+}(f,\Delta)$ is $1$. Then by definition of upper Darboux
integral, $\overline{\int_{0}^{1}}f(x) \, dx = 1$. Similarly, with respect
to $\Delta$,
\begin{align*}
S_{\_}(f, \Delta) = \sum_{i=1}^{n} m_{i}(d_i - d_{i-1})
\tag{by definition of Lower Darboux Sum}\\
=& \sum_{i=1}^{n} (0)(d_i - d_{i-1}) \tag{since $m_i=0$}\\
=& 0
\end{align*}
As $S_{\_}(f,\Delta) = 0$, for $f$ on $I=[0,1]$ and subdivision $\Delta$,
the l.u.b. of $S_{\_}(f,\Delta)$ is $0$. Then by definition of the Lower
Darboux Integral, $\underline{\int_{0}^{1}}f(x) \, dx = 0$.
Hence, $\underline{\int_{0}^{1}}f(x) \, dx = 0$ and
$\overline{\int_{0}^{1}}f(x) \, dx = 1$.
\end{proof}
\end{document}