-
Notifications
You must be signed in to change notification settings - Fork 385
/
Bytecode.h
635 lines (533 loc) · 23.8 KB
/
Bytecode.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
// clang-format off
// This header contains the bytecode definition for Luau interpreter
// Creating the bytecode is outside the scope of this file and is handled by bytecode builder (BytecodeBuilder.h) and bytecode compiler (Compiler.h)
// Note that ALL enums declared in this file are order-sensitive since the values are baked into bytecode that needs to be processed by legacy clients.
// # Bytecode definitions
// Bytecode instructions are using "word code" - each instruction is one or many 32-bit words.
// The first word in the instruction is always the instruction header, and *must* contain the opcode (enum below) in the least significant byte.
//
// Instruction word can be encoded using one of the following encodings:
// ABC - least-significant byte for the opcode, followed by three bytes, A, B and C; each byte declares a register index, small index into some other table or an unsigned integral value
// AD - least-significant byte for the opcode, followed by A byte, followed by D half-word (16-bit integer). D is a signed integer that commonly specifies constant table index or jump offset
// E - least-significant byte for the opcode, followed by E (24-bit integer). E is a signed integer that commonly specifies a jump offset
//
// Instruction word is sometimes followed by one extra word, indicated as AUX - this is just a 32-bit word and is decoded according to the specification for each opcode.
// For each opcode the encoding is *static* - that is, based on the opcode you know a-priory how large the instruction is, with the exception of NEWCLOSURE
// # Bytecode indices
// Bytecode instructions commonly refer to integer values that define offsets or indices for various entities. For each type, there's a maximum encodable value.
// Note that in some cases, the compiler will set a lower limit than the maximum encodable value is to prevent fragile code into bumping against the limits whenever we change the compilation details.
// Additionally, in some specific instructions such as ANDK, the limit on the encoded value is smaller; this means that if a value is larger, a different instruction must be selected.
//
// Registers: 0-254. Registers refer to the values on the function's stack frame, including arguments.
// Upvalues: 0-199. Upvalues refer to the values stored in the closure object.
// Constants: 0-2^23-1. Constants are stored in a table allocated with each proto; to allow for future bytecode tweaks the encodable value is limited to 23 bits.
// Closures: 0-2^15-1. Closures are created from child protos via a child index; the limit is for the number of closures immediately referenced in each function.
// Jumps: -2^23..2^23. Jump offsets are specified in word increments, so jumping over an instruction may sometimes require an offset of 2 or more. Note that for jump instructions with AUX, the AUX word is included as part of the jump offset.
// # Bytecode versions
// Bytecode serialized format embeds a version number, that dictates both the serialized form as well as the allowed instructions. As long as the bytecode version falls into supported
// range (indicated by LBC_BYTECODE_MIN / LBC_BYTECODE_MAX) and was produced by Luau compiler, it should load and execute correctly.
//
// Note that Luau runtime doesn't provide indefinite bytecode compatibility: support for older versions gets removed over time. As such, bytecode isn't a durable storage format and it's expected
// that Luau users can recompile bytecode from source on Luau version upgrades if necessary.
// # Bytecode version history
//
// Note: due to limitations of the versioning scheme, some bytecode blobs that carry version 2 are using features from version 3. Starting from version 3, version should be sufficient to indicate bytecode compatibility.
//
// Version 1: Baseline version for the open-source release. Supported until 0.521.
// Version 2: Adds Proto::linedefined. Supported until 0.544.
// Version 3: Adds FORGPREP/JUMPXEQK* and enhances AUX encoding for FORGLOOP. Removes FORGLOOP_NEXT/INEXT and JUMPIFEQK/JUMPIFNOTEQK. Currently supported.
// Version 4: Adds Proto::flags, typeinfo, and floor division opcodes IDIV/IDIVK. Currently supported.
// Version 5: Adds SUBRK/DIVRK and vector constants. Currently supported.
// Version 6: Adds FASTCALL3. Currently supported.
// # Bytecode type information history
// Version 1: (from bytecode version 4) Type information for function signature. Currently supported.
// Version 2: (from bytecode version 4) Type information for arguments, upvalues, locals and some temporaries. Currently supported.
// Bytecode opcode, part of the instruction header
enum LuauOpcode
{
// NOP: noop
LOP_NOP,
// BREAK: debugger break
LOP_BREAK,
// LOADNIL: sets register to nil
// A: target register
LOP_LOADNIL,
// LOADB: sets register to boolean and jumps to a given short offset (used to compile comparison results into a boolean)
// A: target register
// B: value (0/1)
// C: jump offset
LOP_LOADB,
// LOADN: sets register to a number literal
// A: target register
// D: value (-32768..32767)
LOP_LOADN,
// LOADK: sets register to an entry from the constant table from the proto (number/vector/string)
// A: target register
// D: constant table index (0..32767)
LOP_LOADK,
// MOVE: move (copy) value from one register to another
// A: target register
// B: source register
LOP_MOVE,
// GETGLOBAL: load value from global table using constant string as a key
// A: target register
// C: predicted slot index (based on hash)
// AUX: constant table index
LOP_GETGLOBAL,
// SETGLOBAL: set value in global table using constant string as a key
// A: source register
// C: predicted slot index (based on hash)
// AUX: constant table index
LOP_SETGLOBAL,
// GETUPVAL: load upvalue from the upvalue table for the current function
// A: target register
// B: upvalue index
LOP_GETUPVAL,
// SETUPVAL: store value into the upvalue table for the current function
// A: target register
// B: upvalue index
LOP_SETUPVAL,
// CLOSEUPVALS: close (migrate to heap) all upvalues that were captured for registers >= target
// A: target register
LOP_CLOSEUPVALS,
// GETIMPORT: load imported global table global from the constant table
// A: target register
// D: constant table index (0..32767); we assume that imports are loaded into the constant table
// AUX: 3 10-bit indices of constant strings that, combined, constitute an import path; length of the path is set by the top 2 bits (1,2,3)
LOP_GETIMPORT,
// GETTABLE: load value from table into target register using key from register
// A: target register
// B: table register
// C: index register
LOP_GETTABLE,
// SETTABLE: store source register into table using key from register
// A: source register
// B: table register
// C: index register
LOP_SETTABLE,
// GETTABLEKS: load value from table into target register using constant string as a key
// A: target register
// B: table register
// C: predicted slot index (based on hash)
// AUX: constant table index
LOP_GETTABLEKS,
// SETTABLEKS: store source register into table using constant string as a key
// A: source register
// B: table register
// C: predicted slot index (based on hash)
// AUX: constant table index
LOP_SETTABLEKS,
// GETTABLEN: load value from table into target register using small integer index as a key
// A: target register
// B: table register
// C: index-1 (index is 1..256)
LOP_GETTABLEN,
// SETTABLEN: store source register into table using small integer index as a key
// A: source register
// B: table register
// C: index-1 (index is 1..256)
LOP_SETTABLEN,
// NEWCLOSURE: create closure from a child proto; followed by a CAPTURE instruction for each upvalue
// A: target register
// D: child proto index (0..32767)
LOP_NEWCLOSURE,
// NAMECALL: prepare to call specified method by name by loading function from source register using constant index into target register and copying source register into target register + 1
// A: target register
// B: source register
// C: predicted slot index (based on hash)
// AUX: constant table index
// Note that this instruction must be followed directly by CALL; it prepares the arguments
// This instruction is roughly equivalent to GETTABLEKS + MOVE pair, but we need a special instruction to support custom __namecall metamethod
LOP_NAMECALL,
// CALL: call specified function
// A: register where the function object lives, followed by arguments; results are placed starting from the same register
// B: argument count + 1, or 0 to preserve all arguments up to top (MULTRET)
// C: result count + 1, or 0 to preserve all values and adjust top (MULTRET)
LOP_CALL,
// RETURN: returns specified values from the function
// A: register where the returned values start
// B: number of returned values + 1, or 0 to return all values up to top (MULTRET)
LOP_RETURN,
// JUMP: jumps to target offset
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
LOP_JUMP,
// JUMPBACK: jumps to target offset; this is equivalent to JUMP but is used as a safepoint to be able to interrupt while/repeat loops
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
LOP_JUMPBACK,
// JUMPIF: jumps to target offset if register is not nil/false
// A: source register
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
LOP_JUMPIF,
// JUMPIFNOT: jumps to target offset if register is nil/false
// A: source register
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
LOP_JUMPIFNOT,
// JUMPIFEQ, JUMPIFLE, JUMPIFLT, JUMPIFNOTEQ, JUMPIFNOTLE, JUMPIFNOTLT: jumps to target offset if the comparison is true (or false, for NOT variants)
// A: source register 1
// D: jump offset (-32768..32767; 1 means "next instruction" aka "don't jump")
// AUX: source register 2
LOP_JUMPIFEQ,
LOP_JUMPIFLE,
LOP_JUMPIFLT,
LOP_JUMPIFNOTEQ,
LOP_JUMPIFNOTLE,
LOP_JUMPIFNOTLT,
// ADD, SUB, MUL, DIV, MOD, POW: compute arithmetic operation between two source registers and put the result into target register
// A: target register
// B: source register 1
// C: source register 2
LOP_ADD,
LOP_SUB,
LOP_MUL,
LOP_DIV,
LOP_MOD,
LOP_POW,
// ADDK, SUBK, MULK, DIVK, MODK, POWK: compute arithmetic operation between the source register and a constant and put the result into target register
// A: target register
// B: source register
// C: constant table index (0..255); must refer to a number
LOP_ADDK,
LOP_SUBK,
LOP_MULK,
LOP_DIVK,
LOP_MODK,
LOP_POWK,
// AND, OR: perform `and` or `or` operation (selecting first or second register based on whether the first one is truthy) and put the result into target register
// A: target register
// B: source register 1
// C: source register 2
LOP_AND,
LOP_OR,
// ANDK, ORK: perform `and` or `or` operation (selecting source register or constant based on whether the source register is truthy) and put the result into target register
// A: target register
// B: source register
// C: constant table index (0..255)
LOP_ANDK,
LOP_ORK,
// CONCAT: concatenate all strings between B and C (inclusive) and put the result into A
// A: target register
// B: source register start
// C: source register end
LOP_CONCAT,
// NOT, MINUS, LENGTH: compute unary operation for source register and put the result into target register
// A: target register
// B: source register
LOP_NOT,
LOP_MINUS,
LOP_LENGTH,
// NEWTABLE: create table in target register
// A: target register
// B: table size, stored as 0 for v=0 and ceil(log2(v))+1 for v!=0
// AUX: array size
LOP_NEWTABLE,
// DUPTABLE: duplicate table using the constant table template to target register
// A: target register
// D: constant table index (0..32767)
LOP_DUPTABLE,
// SETLIST: set a list of values to table in target register
// A: target register
// B: source register start
// C: value count + 1, or 0 to use all values up to top (MULTRET)
// AUX: table index to start from
LOP_SETLIST,
// FORNPREP: prepare a numeric for loop, jump over the loop if first iteration doesn't need to run
// A: target register; numeric for loops assume a register layout [limit, step, index, variable]
// D: jump offset (-32768..32767)
// limit/step are immutable, index isn't visible to user code since it's copied into variable
LOP_FORNPREP,
// FORNLOOP: adjust loop variables for one iteration, jump back to the loop header if loop needs to continue
// A: target register; see FORNPREP for register layout
// D: jump offset (-32768..32767)
LOP_FORNLOOP,
// FORGLOOP: adjust loop variables for one iteration of a generic for loop, jump back to the loop header if loop needs to continue
// A: target register; generic for loops assume a register layout [generator, state, index, variables...]
// D: jump offset (-32768..32767)
// AUX: variable count (1..255) in the low 8 bits, high bit indicates whether to use ipairs-style traversal in the fast path
// loop variables are adjusted by calling generator(state, index) and expecting it to return a tuple that's copied to the user variables
// the first variable is then copied into index; generator/state are immutable, index isn't visible to user code
LOP_FORGLOOP,
// FORGPREP_INEXT: prepare FORGLOOP with 2 output variables (no AUX encoding), assuming generator is luaB_inext, and jump to FORGLOOP
// A: target register (see FORGLOOP for register layout)
LOP_FORGPREP_INEXT,
// FASTCALL3: perform a fast call of a built-in function using 3 register arguments
// A: builtin function id (see LuauBuiltinFunction)
// B: source argument register
// C: jump offset to get to following CALL
// AUX: source register 2 in least-significant byte
// AUX: source register 3 in second least-significant byte
LOP_FASTCALL3,
// FORGPREP_NEXT: prepare FORGLOOP with 2 output variables (no AUX encoding), assuming generator is luaB_next, and jump to FORGLOOP
// A: target register (see FORGLOOP for register layout)
LOP_FORGPREP_NEXT,
// NATIVECALL: start executing new function in native code
// this is a pseudo-instruction that is never emitted by bytecode compiler, but can be constructed at runtime to accelerate native code dispatch
LOP_NATIVECALL,
// GETVARARGS: copy variables into the target register from vararg storage for current function
// A: target register
// B: variable count + 1, or 0 to copy all variables and adjust top (MULTRET)
LOP_GETVARARGS,
// DUPCLOSURE: create closure from a pre-created function object (reusing it unless environments diverge)
// A: target register
// D: constant table index (0..32767)
LOP_DUPCLOSURE,
// PREPVARARGS: prepare stack for variadic functions so that GETVARARGS works correctly
// A: number of fixed arguments
LOP_PREPVARARGS,
// LOADKX: sets register to an entry from the constant table from the proto (number/string)
// A: target register
// AUX: constant table index
LOP_LOADKX,
// JUMPX: jumps to the target offset; like JUMPBACK, supports interruption
// E: jump offset (-2^23..2^23; 0 means "next instruction" aka "don't jump")
LOP_JUMPX,
// FASTCALL: perform a fast call of a built-in function
// A: builtin function id (see LuauBuiltinFunction)
// C: jump offset to get to following CALL
// FASTCALL is followed by one of (GETIMPORT, MOVE, GETUPVAL) instructions and by CALL instruction
// This is necessary so that if FASTCALL can't perform the call inline, it can continue normal execution
// If FASTCALL *can* perform the call, it jumps over the instructions *and* over the next CALL
// Note that FASTCALL will read the actual call arguments, such as argument/result registers and counts, from the CALL instruction
LOP_FASTCALL,
// COVERAGE: update coverage information stored in the instruction
// E: hit count for the instruction (0..2^23-1)
// The hit count is incremented by VM every time the instruction is executed, and saturates at 2^23-1
LOP_COVERAGE,
// CAPTURE: capture a local or an upvalue as an upvalue into a newly created closure; only valid after NEWCLOSURE
// A: capture type, see LuauCaptureType
// B: source register (for VAL/REF) or upvalue index (for UPVAL/UPREF)
LOP_CAPTURE,
// SUBRK, DIVRK: compute arithmetic operation between the constant and a source register and put the result into target register
// A: target register
// B: constant table index (0..255); must refer to a number
// C: source register
LOP_SUBRK,
LOP_DIVRK,
// FASTCALL1: perform a fast call of a built-in function using 1 register argument
// A: builtin function id (see LuauBuiltinFunction)
// B: source argument register
// C: jump offset to get to following CALL
LOP_FASTCALL1,
// FASTCALL2: perform a fast call of a built-in function using 2 register arguments
// A: builtin function id (see LuauBuiltinFunction)
// B: source argument register
// C: jump offset to get to following CALL
// AUX: source register 2 in least-significant byte
LOP_FASTCALL2,
// FASTCALL2K: perform a fast call of a built-in function using 1 register argument and 1 constant argument
// A: builtin function id (see LuauBuiltinFunction)
// B: source argument register
// C: jump offset to get to following CALL
// AUX: constant index
LOP_FASTCALL2K,
// FORGPREP: prepare loop variables for a generic for loop, jump to the loop backedge unconditionally
// A: target register; generic for loops assume a register layout [generator, state, index, variables...]
// D: jump offset (-32768..32767)
LOP_FORGPREP,
// JUMPXEQKNIL, JUMPXEQKB: jumps to target offset if the comparison with constant is true (or false, see AUX)
// A: source register 1
// D: jump offset (-32768..32767; 1 means "next instruction" aka "don't jump")
// AUX: constant value (for boolean) in low bit, NOT flag (that flips comparison result) in high bit
LOP_JUMPXEQKNIL,
LOP_JUMPXEQKB,
// JUMPXEQKN, JUMPXEQKS: jumps to target offset if the comparison with constant is true (or false, see AUX)
// A: source register 1
// D: jump offset (-32768..32767; 1 means "next instruction" aka "don't jump")
// AUX: constant table index in low 24 bits, NOT flag (that flips comparison result) in high bit
LOP_JUMPXEQKN,
LOP_JUMPXEQKS,
// IDIV: compute floor division between two source registers and put the result into target register
// A: target register
// B: source register 1
// C: source register 2
LOP_IDIV,
// IDIVK compute floor division between the source register and a constant and put the result into target register
// A: target register
// B: source register
// C: constant table index (0..255)
LOP_IDIVK,
// Enum entry for number of opcodes, not a valid opcode by itself!
LOP__COUNT
};
// Bytecode instruction header: it's always a 32-bit integer, with low byte (first byte in little endian) containing the opcode
// Some instruction types require more data and have more 32-bit integers following the header
#define LUAU_INSN_OP(insn) ((insn) & 0xff)
// ABC encoding: three 8-bit values, containing registers or small numbers
#define LUAU_INSN_A(insn) (((insn) >> 8) & 0xff)
#define LUAU_INSN_B(insn) (((insn) >> 16) & 0xff)
#define LUAU_INSN_C(insn) (((insn) >> 24) & 0xff)
// AD encoding: one 8-bit value, one signed 16-bit value
#define LUAU_INSN_D(insn) (int32_t(insn) >> 16)
// E encoding: one signed 24-bit value
#define LUAU_INSN_E(insn) (int32_t(insn) >> 8)
// Bytecode tags, used internally for bytecode encoded as a string
enum LuauBytecodeTag
{
// Bytecode version; runtime supports [MIN, MAX], compiler emits TARGET by default but may emit a higher version when flags are enabled
LBC_VERSION_MIN = 3,
LBC_VERSION_MAX = 6,
LBC_VERSION_TARGET = 6,
// Type encoding version
LBC_TYPE_VERSION_MIN = 1,
LBC_TYPE_VERSION_MAX = 3,
LBC_TYPE_VERSION_TARGET = 3,
// Types of constant table entries
LBC_CONSTANT_NIL = 0,
LBC_CONSTANT_BOOLEAN,
LBC_CONSTANT_NUMBER,
LBC_CONSTANT_STRING,
LBC_CONSTANT_IMPORT,
LBC_CONSTANT_TABLE,
LBC_CONSTANT_CLOSURE,
LBC_CONSTANT_VECTOR,
};
// Type table tags
enum LuauBytecodeType
{
LBC_TYPE_NIL = 0,
LBC_TYPE_BOOLEAN,
LBC_TYPE_NUMBER,
LBC_TYPE_STRING,
LBC_TYPE_TABLE,
LBC_TYPE_FUNCTION,
LBC_TYPE_THREAD,
LBC_TYPE_USERDATA,
LBC_TYPE_VECTOR,
LBC_TYPE_BUFFER,
LBC_TYPE_ANY = 15,
LBC_TYPE_TAGGED_USERDATA_BASE = 64,
LBC_TYPE_TAGGED_USERDATA_END = 64 + 32,
LBC_TYPE_OPTIONAL_BIT = 1 << 7,
LBC_TYPE_INVALID = 256,
};
// Builtin function ids, used in LOP_FASTCALL
enum LuauBuiltinFunction
{
LBF_NONE = 0,
// assert()
LBF_ASSERT,
// math.
LBF_MATH_ABS,
LBF_MATH_ACOS,
LBF_MATH_ASIN,
LBF_MATH_ATAN2,
LBF_MATH_ATAN,
LBF_MATH_CEIL,
LBF_MATH_COSH,
LBF_MATH_COS,
LBF_MATH_DEG,
LBF_MATH_EXP,
LBF_MATH_FLOOR,
LBF_MATH_FMOD,
LBF_MATH_FREXP,
LBF_MATH_LDEXP,
LBF_MATH_LOG10,
LBF_MATH_LOG,
LBF_MATH_MAX,
LBF_MATH_MIN,
LBF_MATH_MODF,
LBF_MATH_POW,
LBF_MATH_RAD,
LBF_MATH_SINH,
LBF_MATH_SIN,
LBF_MATH_SQRT,
LBF_MATH_TANH,
LBF_MATH_TAN,
// bit32.
LBF_BIT32_ARSHIFT,
LBF_BIT32_BAND,
LBF_BIT32_BNOT,
LBF_BIT32_BOR,
LBF_BIT32_BXOR,
LBF_BIT32_BTEST,
LBF_BIT32_EXTRACT,
LBF_BIT32_LROTATE,
LBF_BIT32_LSHIFT,
LBF_BIT32_REPLACE,
LBF_BIT32_RROTATE,
LBF_BIT32_RSHIFT,
// type()
LBF_TYPE,
// string.
LBF_STRING_BYTE,
LBF_STRING_CHAR,
LBF_STRING_LEN,
// typeof()
LBF_TYPEOF,
// string.
LBF_STRING_SUB,
// math.
LBF_MATH_CLAMP,
LBF_MATH_SIGN,
LBF_MATH_ROUND,
// raw*
LBF_RAWSET,
LBF_RAWGET,
LBF_RAWEQUAL,
// table.
LBF_TABLE_INSERT,
LBF_TABLE_UNPACK,
// vector ctor
LBF_VECTOR,
// bit32.count
LBF_BIT32_COUNTLZ,
LBF_BIT32_COUNTRZ,
// select(_, ...)
LBF_SELECT_VARARG,
// rawlen
LBF_RAWLEN,
// bit32.extract(_, k, k)
LBF_BIT32_EXTRACTK,
// get/setmetatable
LBF_GETMETATABLE,
LBF_SETMETATABLE,
// tonumber/tostring
LBF_TONUMBER,
LBF_TOSTRING,
// bit32.byteswap(n)
LBF_BIT32_BYTESWAP,
// buffer.
LBF_BUFFER_READI8,
LBF_BUFFER_READU8,
LBF_BUFFER_WRITEU8,
LBF_BUFFER_READI16,
LBF_BUFFER_READU16,
LBF_BUFFER_WRITEU16,
LBF_BUFFER_READI32,
LBF_BUFFER_READU32,
LBF_BUFFER_WRITEU32,
LBF_BUFFER_READF32,
LBF_BUFFER_WRITEF32,
LBF_BUFFER_READF64,
LBF_BUFFER_WRITEF64,
// vector.
LBF_VECTOR_MAGNITUDE,
LBF_VECTOR_NORMALIZE,
LBF_VECTOR_CROSS,
LBF_VECTOR_DOT,
LBF_VECTOR_FLOOR,
LBF_VECTOR_CEIL,
LBF_VECTOR_ABS,
LBF_VECTOR_SIGN,
LBF_VECTOR_CLAMP,
LBF_VECTOR_MIN,
LBF_VECTOR_MAX,
};
// Capture type, used in LOP_CAPTURE
enum LuauCaptureType
{
LCT_VAL = 0,
LCT_REF,
LCT_UPVAL,
};
// Proto flag bitmask, stored in Proto::flags
enum LuauProtoFlag
{
// used to tag main proto for modules with --!native
LPF_NATIVE_MODULE = 1 << 0,
// used to tag individual protos as not profitable to compile natively
LPF_NATIVE_COLD = 1 << 1,
// used to tag main proto for modules that have at least one function with native attribute
LPF_NATIVE_FUNCTION = 1 << 2,
};