forked from gpspelle/game-theory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
op3_pawel.py
251 lines (188 loc) · 7.22 KB
/
op3_pawel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from tools import Graph, Node
import argparse
import sys
sys.setrecursionlimit(5000)
def main(input_file, output_file):
# player 0: circular - even
# player 1: rectangular - odd
even_nodes = []
odd_nodes = []
G = Graph()
higher = -1
number_nodes = None
with open(input_file) as reader:
data = reader.read().splitlines(True)
number_nodes = data[0].split()
number_nodes = number_nodes[1]
number_nodes = number_nodes.replace(";", "")
data = data[1:]
for line in data:
uuid, p, owner, edges, name = line.split()
uuid = int(uuid)
p = int(p)
owner = int(owner)
name = name.replace("\"", "")
name = name.replace(";", "")
node = Node(p, owner, uuid, name)
edges = edges.split(',')
G.insert_node(node)
for edge in edges:
edge = int(edge)
G.insert_edge(uuid, edge)
if owner % 2 == 0:
even_nodes.append(uuid)
else:
odd_nodes.append(uuid)
if p > higher:
higher = p
if higher % 2 == 1:
higher = higher + 1
# it's number_nodes + 1 because it's index in 0
WE = solveE(G, even_nodes, odd_nodes, higher, int(number_nodes) + 1, int(number_nodes) + 1)
nodes = G.get_nodes()
for node in WE:
node.set_winner(0) # 0 means even player
for node in nodes:
if node.get_winner() == -1:
node.set_winner(1) # 1 means odd player
with open(output_file, 'w') as writter:
writter.write("parity " + number_nodes + ";\n")
for node in nodes:
writter.write(str(node.get_uuid()) + " " + str(node.get_winner()) + ";\n")
def atr(G, player_nodes, U, num):
all_nodes = G.get_nodes()
not_changed = False
start_nodes = [node.get_uuid() for node in U]
atr_nodes = start_nodes
are_equal = True
while not not_changed:
changed = False
for node in all_nodes:
successors = G.get_edges(node.get_uuid())
if node.get_uuid() in player_nodes:
for succ in successors:
if succ in atr_nodes:
if node.get_uuid() not in atr_nodes:
changed = True
are_equal = False
atr_nodes.append(node.get_uuid())
break
else:
all_of_them = True
for succ in successors:
if succ not in atr_nodes:
all_of_them = False
break
if all_of_them:
if node.get_uuid() not in atr_nodes:
changed = True
are_equal = False
atr_nodes.append(node.get_uuid())
not_changed = not(changed)
return atr_nodes, are_equal
def contain_all(G, ATRE, h):
all_nodes = G.get_nodes()
Nh_1 = [node.get_uuid() for node in G.get_nodes() if node.get_priority() == h-1]
return Nh_1 <= ATRE
def solveE(G, even_nodes, odd_nodes, h, pe, po):
all_nodes = G.get_nodes()
amount_nodes = len(all_nodes)
if amount_nodes == 0 or pe <= 1 or h < 0:
return []
pe = min(amount_nodes, pe)
po = min(amount_nodes, po)
while True:
Nh = [node for node in G.get_nodes() if node.get_priority() == h]
ATRE, _ = atr(G, even_nodes, Nh, 0)
if contain_all(G, ATRE, h):
Nh_2 = [node for node in G.get_nodes() if node.get_priority() == h-2]
Nh += Nh_2
ATRE, _ = atr(G, even_nodes, Nh, 0)
nodes, edges = G.remove_nodes(ATRE)
H = Graph(nodes, edges)
WO = solveO(H, even_nodes, odd_nodes, h-1, po//2, pe)
ATRO, equal = atr(G, odd_nodes, WO, 1)
nodes, edges = G.remove_nodes(ATRO)
G = Graph(nodes, edges)
if equal:
# testing W0 == ATR0
break
Nh = [node for node in G.get_nodes() if node.get_priority() == h]
ATRE, _ = atr(G, even_nodes, Nh, 0)
nodes, edges = G.remove_nodes(ATRE)
H = Graph(nodes, edges)
WO = solveO(H, even_nodes, odd_nodes, h-1, po, pe)
ATRO, equal = atr(G, odd_nodes, WO, 1)
nodes, edges = G.remove_nodes(ATRO)
G = Graph(nodes, edges)
while not(equal):
Nh = [node for node in G.get_nodes() if node.get_priority() == h]
ATRE, _ = atr(G, even_nodes, Nh, 0)
if contain_all(G, ATRE, h):
Nh_2 = [node for node in G.get_nodes() if node.get_priority() == h-2]
Nh += Nh_2
ATRE, _ = atr(G, even_nodes, Nh, 0)
nodes, edges = G.remove_nodes(ATRE)
H = Graph(nodes, edges)
WO = solveO(H, even_nodes, odd_nodes, h-1, po//2, pe)
ATRO, equal = atr(G, odd_nodes, WO, 1)
nodes, edges = G.remove_nodes(ATRO)
G = Graph(nodes, edges)
WE = G.get_nodes()
return WE
def solveO(G, even_nodes, odd_nodes, h, po, pe):
all_nodes = G.get_nodes()
amount_nodes = len(all_nodes)
if amount_nodes == 0 or po <= 1 or h < 0:
return []
pe = min(amount_nodes, pe)
po = min(amount_nodes, po)
while True:
Nh = [node for node in G.get_nodes() if node.get_priority() == h]
ATRO, _ = atr(G, odd_nodes, Nh, 1)
if contain_all(G, ATRO, h):
Nh_2 = [node for node in G.get_nodes() if node.get_priority() == h-2]
Nh += Nh_2
ATRO, _ = atr(G, odd_nodes, Nh, 1)
nodes, edges = G.remove_nodes(ATRO)
H = Graph(nodes, edges)
WE = solveE(H, even_nodes, odd_nodes, h-1, pe//2, po)
ATRE, equal = atr(G, even_nodes, WE, 0)
nodes, edges = G.remove_nodes(ATRE)
G = Graph(nodes, edges)
if equal:
# testing WE == ATRE
break
Nh = [node for node in G.get_nodes() if node.get_priority() == h]
ATRO, _ = atr(G, odd_nodes, Nh, 1)
nodes, edges = G.remove_nodes(ATRO)
H = Graph(nodes, edges)
WE = solveE(H, even_nodes, odd_nodes, h-1, pe, po)
ATRE, equal = atr(G, even_nodes, WE, 0)
nodes, edges = G.remove_nodes(ATRE)
G = Graph(nodes, edges)
while not(equal):
Nh = [node for node in G.get_nodes() if node.get_priority() == h]
ATRO, _ = atr(G, odd_nodes, Nh, 1)
if contain_all(G, ATRO, h):
Nh_2 = [node for node in G.get_nodes() if node.get_priority() == h-2]
Nh += Nh_2
ATRO, _ = atr(G, odd_nodes, Nh, 1)
nodes, edges = G.remove_nodes(ATRO)
H = Graph(nodes, edges)
WE = solveE(H, even_nodes, odd_nodes, h-1, pe//2, po)
ATRE, equal = atr(G, even_nodes, WE, 0)
nodes, edges = G.remove_nodes(ATRE)
G = Graph(nodes, edges)
WO = G.get_nodes()
return WO
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--input", help="input file to run over the algorithm", nargs='+', required=True)
parser.add_argument("--output", help="output file to put the answer of the algorithm", nargs='+', required=True)
try:
args = parser.parse_args()
except:
parser.print_help(sys.stderr)
exit(1)
main(args.input[0], args.output[0])