forked from HobbitLong/SupContrast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_ccl.py
408 lines (331 loc) · 14.5 KB
/
main_ccl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from __future__ import print_function
import os
import sys
import argparse
import time
import math
import gc
import random
import tensorboard_logger as tb_logger
import torch
import torch.backends.cudnn as cudnn
from torchvision import transforms, datasets
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import Dataset, DataLoader
from util import TwoCropTransform, AverageMeter
from util import adjust_learning_rate, warmup_learning_rate
from util import set_optimizer, save_model
from networks.resnet_big import SupConResNet
from losses_ccl import CCL_Loss
from PIL import Image
import numpy as np
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# Load data from npy
# these files will be correctly loaded in the main function
glob_labels = np.load("features_extracted/miniImagenet_tr20ts80_split0_labels.npy")
glob_features = np.load("features_extracted/miniImagenet_tr20ts80_split0_features.npy")
glob_rks = np.load("rks_extracted/miniImagenet_tr20ts80_split0_rks.npy", allow_pickle=True)
# Transfer global features data to device (GPU is default)
device = 'cuda:0'
# To store features from previous epochs
prev_feat = dict()
try:
import apex
from apex import amp, optimizers
except ImportError:
pass
class CustomDataset(Dataset):
def __init__(self, image_paths, labels, transform=None):
"""
Custom dataset loader that relies on data from npy files
Args:
image_paths (list): Lista de caminhos para as imagens.
labels (list): Lista de rótulos para as imagens.
transform (callable, optional): Uma função/transformação opcional a ser aplicada nas imagens.
"""
self.image_paths = image_paths
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image_path = self.image_paths[idx]
image = Image.open(image_path).convert('RGB') # Garantir que a imagem seja lida em modo RGB
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label, idx
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=10,
help='print frequency')
parser.add_argument('--save_freq', type=int, default=20,
help='save frequency')
parser.add_argument('--batch_size', type=int, default=256,
help='batch_size')
parser.add_argument('--num_workers', type=int, default=16,
help='num of workers to use')
parser.add_argument('--epochs', type=int, default=1000,
help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.05,
help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='700,800,900',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1,
help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
# model dataset
parser.add_argument('--model', type=str, default='resnet50')
parser.add_argument('--dataset', type=str, default='cifar10',
choices=['cifar10', 'cifar100', 'path', 'food101', 'miniImagenet'], help='dataset')
parser.add_argument('--mean', type=str, help='mean of dataset in path in form of str tuple')
parser.add_argument('--std', type=str, help='std of dataset in path in form of str tuple')
parser.add_argument('--data_folder', type=str, default=None, help='path to custom dataset')
parser.add_argument('--size', type=int, default=32, help='parameter for RandomResizedCrop')
# method
parser.add_argument('--method', type=str, default='SupCon',
choices=['SupCon', 'SimCLR'], help='choose method')
# temperature
parser.add_argument('--temp', type=float, default=0.07,
help='temperature for loss function')
# other setting
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--syncBN', action='store_true',
help='using synchronized batch normalization')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--trial', type=str, default='0',
help='id for recording multiple runs')
parser.add_argument('--ckpt_filename', type=str, default='pretrain_ckpt',
help='name of the ckpt file to be saved')
parser.add_argument('--load_ckpt_filename', type=str, default='pretrain_ckpt',
help='name of the ckpt file to be loaded')
parser.add_argument('--npy_file', type=str, default='',
help='name of the npy file containing the training set paths and labels')
parser.add_argument('--features_file', type=str, default='',
help='name of the npy features file')
parser.add_argument('--labels_file', type=str, default='',
help='name of the npy labels file')
parser.add_argument('--rks_file', type=str, default='',
help='name of the npy rks file')
parser.add_argument('--k_loss', type=int, default=50,
help='initial k for the loss')
opt = parser.parse_args()
# check if dataset is path that passed required arguments
if opt.dataset == 'path':
assert opt.data_folder is not None \
and opt.mean is not None \
and opt.std is not None
# set the path according to the environment
if opt.data_folder is None:
opt.data_folder = './datasets/'
opt.model_path = './save/SupCon/{}_models'.format(opt.dataset)
opt.tb_path = './save/SupCon/{}_tensorboard'.format(opt.dataset)
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_name = '{}_{}_{}_lr_{}_decay_{}_bsz_{}_temp_{}_trial_{}'.\
format(opt.method, opt.dataset, opt.model, opt.learning_rate,
opt.weight_decay, opt.batch_size, opt.temp, opt.trial)
if opt.cosine:
opt.model_name = '{}_cosine'.format(opt.model_name)
# warm-up for large-batch training,
if opt.batch_size > 256:
opt.warm = True
if opt.warm:
opt.model_name = '{}_warm'.format(opt.model_name)
opt.warmup_from = 0.01
opt.warm_epochs = 10
if opt.cosine:
eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3)
opt.warmup_to = eta_min + (opt.learning_rate - eta_min) * (
1 + math.cos(math.pi * opt.warm_epochs / opt.epochs)) / 2
else:
opt.warmup_to = opt.learning_rate
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
return opt
def set_loader(opt):
# construct data loader
if opt.dataset == 'cifar10':
mean = (0.4914, 0.4822, 0.4465)
std = (0.2023, 0.1994, 0.2010)
elif opt.dataset == 'cifar100':
mean = (0.5071, 0.4867, 0.4408)
std = (0.2675, 0.2565, 0.2761)
elif opt.dataset == 'food101':
mean = (0.5458, 0.4443, 0.3442)
std = (0.2328, 0.2439, 0.2426)
elif opt.dataset == 'miniImagenet':
mean = (0.4732, 0.4489, 0.4033)
std = (0.2346, 0.2298, 0.2301)
elif opt.dataset == 'path':
mean = eval(opt.mean)
std = eval(opt.std)
else:
raise ValueError('dataset not supported: {}'.format(opt.dataset))
normalize = transforms.Normalize(mean=mean, std=std)
train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=32, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
normalize,
])
if opt.dataset in ['cifar100', 'cifar10', 'miniImagenet', 'food101']:
# Load data from .npy
tmp_data = np.load(opt.npy_file, allow_pickle=True)
paths = [elem[0] for elem in tmp_data]
labels = [elem[1] for elem in tmp_data]
# Convert labels to integer
label_encoder = LabelEncoder()
labels_int = label_encoder.fit_transform(labels)
# Load dataset with custom loader
train_dataset = CustomDataset(image_paths=paths,
labels=labels_int,
transform=TwoCropTransform(train_transform))
else:
raise ValueError(opt.dataset)
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batch_size, shuffle=(train_sampler is None),
num_workers=opt.num_workers, pin_memory=True, sampler=train_sampler)
return train_loader
def set_model(opt):
model = SupConResNet(name=opt.model)
criterion = CCL_Loss(temperature=opt.temp)
# enable synchronized Batch Normalization
if opt.syncBN:
model = apex.parallel.convert_syncbn_model(model)
if torch.cuda.is_available():
if torch.cuda.device_count() > 1:
model.encoder = torch.nn.DataParallel(model.encoder)
model = model.cuda()
criterion = criterion.cuda()
cudnn.benchmark = True
# load ckpt model
print("Loading model {} ....".format(opt.load_ckpt_filename))
pretrained_path = opt.load_ckpt_filename
if pretrained_path is not None:
checkpoint = torch.load(pretrained_path)
if "model" in checkpoint:
model.load_state_dict(checkpoint['model'])
else:
model.load_state_dict(checkpoint)
return model, criterion
def train(train_loader, model, criterion, optimizer, epoch, opt):
"""one epoch training"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
end = time.time()
for idx, (images, labels, indices) in enumerate(train_loader):
data_time.update(time.time() - end)
images = torch.cat([images[0], images[1]], dim=0)
if torch.cuda.is_available():
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
bsz = labels.shape[0]
# warm-up learning rate
warmup_learning_rate(opt, epoch, idx, len(train_loader), optimizer)
# compute loss
features = model(images)
f1, f2 = torch.split(features, [bsz, bsz], dim=0)
features = torch.cat([f1.unsqueeze(1), f2.unsqueeze(1)], dim=1)
if opt.method == 'SupCon':
loss = criterion(features, labels, indices=indices,
saved_features=glob_features,
saved_labels=glob_labels,
saved_rks=glob_rks,
epoch=epoch,
k_start=opt.k_loss,
total_epochs=opt.epochs)
elif opt.method == 'SimCLR':
loss = criterion(features)
else:
raise ValueError('contrastive method not supported: {}'.
format(opt.method))
# update metric
losses.update(loss.item(), bsz)
# SGD
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % opt.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses))
sys.stdout.flush()
# update saved features
#prev_feat = dict()
for i, ind in enumerate(indices):
feat = features[i][0].detach().clone().cpu()
prev_feat[ind.item()] = feat
return losses.avg
def main():
global glob_features
global glob_labels
global glob_rks
opt = parse_option()
# Load data from npy
glob_labels = np.load(opt.labels_file)
glob_features = np.load(opt.features_file)
glob_rks = np.load(opt.rks_file, allow_pickle=True)
# Transfer global features data to device
device = 'cuda:0'
glob_features = torch.from_numpy(glob_features)
glob_features = glob_features.to(device)
# build data loader
train_loader = set_loader(opt)
# build model and criterion
model, criterion = set_model(opt)
# build optimizer
optimizer = set_optimizer(opt, model)
# tensorboard
logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
# training routine
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(opt, optimizer, epoch)
# train for one epoch
time1 = time.time()
loss = train(train_loader, model, criterion, optimizer, epoch, opt)
time2 = time.time()
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
# tensorboard logger
logger.log_value('loss', loss, epoch)
logger.log_value('learning_rate', optimizer.param_groups[0]['lr'], epoch)
# update knn features for next epoch
glob_features_cpu = glob_features.to('cpu').clone()
glob_features = glob_features_cpu
for key in prev_feat.keys():
glob_features[key] = prev_feat[key]
glob_features = glob_features.to(device)
if epoch % opt.save_freq == 0:
save_file = os.path.join(
opt.save_folder, '{filename}_epoch_{epoch}.pth'.format(filename=opt.ckpt_filename,
epoch=epoch))
save_model(model, optimizer, opt, epoch, save_file)
if __name__ == '__main__':
main()