-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathutil.py
277 lines (236 loc) · 10.2 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import errno
import collections
import json
import math
import numpy as np
import tensorflow as tf
import pyhocon
def make_summary(value_dict):
return tf.Summary(value=[tf.Summary.Value(tag=k, simple_value=v) for k,v in value_dict.items()])
def flatten(l):
return [item for sublist in l for item in sublist]
def get_config(filename):
return pyhocon.ConfigFactory.parse_file(filename)
def print_config(config):
print(pyhocon.HOCONConverter.convert(config, "hocon"))
def set_gpus(*gpus):
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(str(g) for g in gpus)
print("Setting CUDA_VISIBLE_DEVICES to: {}".format(os.environ["CUDA_VISIBLE_DEVICES"]))
def mkdirs(path):
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
return path
def load_char_dict(char_vocab_path):
vocab = [u"<unk>"]
with open(char_vocab_path) as f:
vocab.extend(unicode(c, "utf-8").strip() for c in f.readlines())
char_dict = collections.defaultdict(int)
char_dict.update({c:i for i,c in enumerate(vocab)})
return char_dict
def maybe_divide(x, y):
return 0 if y == 0 else x / float(y)
def projection(inputs, output_size, initializer=None):
return ffnn(inputs, 0, -1, output_size, dropout=None, output_weights_initializer=initializer)
def shape(x, dim):
return x.get_shape()[dim].value or tf.shape(x)[dim]
def ffnn(inputs, num_hidden_layers, hidden_size, output_size, dropout, output_weights_initializer=None):
if len(inputs.get_shape()) > 2:
current_inputs = tf.reshape(inputs, [-1, shape(inputs, -1)])
else:
current_inputs = inputs
for i in xrange(num_hidden_layers):
hidden_weights = tf.get_variable("hidden_weights_{}".format(i), [shape(current_inputs, 1), hidden_size])
hidden_bias = tf.get_variable("hidden_bias_{}".format(i), [hidden_size])
current_outputs = tf.nn.relu(tf.nn.xw_plus_b(current_inputs, hidden_weights, hidden_bias))
if dropout is not None:
current_outputs = tf.nn.dropout(current_outputs, dropout)
current_inputs = current_outputs
output_weights = tf.get_variable("output_weights", [shape(current_inputs, 1), output_size], initializer=output_weights_initializer)
output_bias = tf.get_variable("output_bias", [output_size])
outputs = tf.nn.xw_plus_b(current_inputs, output_weights, output_bias)
if len(inputs.get_shape()) == 3:
outputs = tf.reshape(outputs, [shape(inputs, 0), shape(inputs, 1), output_size])
elif len(inputs.get_shape()) > 3:
raise ValueError("FFNN with rank {} not supported".format(len(inputs.get_shape())))
return outputs
def cnn(inputs, filter_sizes, num_filters):
num_words = shape(inputs, 0)
num_chars = shape(inputs, 1)
input_size = shape(inputs, 2)
outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.variable_scope("conv_{}".format(i)):
w = tf.get_variable("w", [filter_size, input_size, num_filters])
b = tf.get_variable("b", [num_filters])
conv = tf.nn.conv1d(inputs, w, stride=1, padding="VALID") # [num_words, num_chars - filter_size, num_filters]
h = tf.nn.relu(tf.nn.bias_add(conv, b)) # [num_words, num_chars - filter_size, num_filters]
pooled = tf.reduce_max(h, 1) # [num_words, num_filters]
outputs.append(pooled)
return tf.concat(outputs, 1) # [num_words, num_filters * len(filter_sizes)]
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
position = tf.to_float(tf.range(length))
num_timescales = channels // 2
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.to_float(num_timescales) - 1))
inv_timescales = min_timescale * tf.exp(
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]])
signal = tf.reshape(signal, [1, length, channels])
return signal
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
length = tf.shape(x)[1]
channels = tf.shape(x)[2]
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return x + signal
def add_timing_signal_1d_given_position(x, position, min_timescale=1.0, max_timescale=1.0e4):
channels = tf.shape(x)[2]
num_timescales = channels // 2
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.to_float(num_timescales) - 1))
inv_timescales = min_timescale * tf.exp(
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = (tf.expand_dims(tf.to_float(position), 2) *
tf.expand_dims(tf.expand_dims(inv_timescales, 0), 0))
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=2)
signal = tf.pad(signal, [[0, 0], [0, 0], [0, tf.mod(channels, 2)]])
return x + signal
def batch_gather(emb, indices):
batch_size = shape(emb, 0)
seqlen = shape(emb, 1)
flattened_emb = tf.reshape(emb, [batch_size * seqlen, -1]) # [batch_size * seqlen, emb]
offset = tf.expand_dims(tf.range(batch_size) * seqlen, 1) # [batch_size, 1]
return tf.gather(flattened_emb, indices + offset) # [batch_size, num_indices, emb]
class RetrievalEvaluator(object):
def __init__(self):
self._num_correct = 0
self._num_gold = 0
self._num_predicted = 0
def update(self, gold_set, predicted_set):
self._num_correct += len(gold_set & predicted_set)
self._num_gold += len(gold_set)
self._num_predicted += len(predicted_set)
def recall(self):
return maybe_divide(self._num_correct, self._num_gold)
def precision(self):
return maybe_divide(self._num_correct, self._num_predicted)
def metrics(self):
recall = self.recall()
precision = self.precision()
f1 = maybe_divide(2 * recall * precision, precision + recall)
return recall, precision, f1
class EmbeddingDictionary(object):
def __init__(self, info, normalize=True, maybe_cache=None):
self._size = info["size"]
self._lowercase = info["lowercase"]
self._normalize = normalize
self._path = info["path"]
if maybe_cache is not None and maybe_cache._path == self._path:
assert self._size == maybe_cache._size
assert self._lowercase == maybe_cache._lowercase
self._embeddings = maybe_cache._embeddings
else:
self._embeddings = self.load_embedding_dict(self._path, info["format"])
@property
def size(self):
return self._size
def load_embedding_dict(self, path, file_format):
print("Loading word embeddings from {}...".format(path))
default_embedding = np.zeros(self.size)
embedding_dict = collections.defaultdict(lambda:default_embedding)
if len(path) > 0:
is_vec = (file_format == "vec")
vocab_size = None
with open(path, "r") as f:
#for i, line in enumerate(f.readlines()):
i = 0
for line in f:
splits = line.split()
if i == 0 and is_vec:
vocab_size = int(splits[0])
assert int(splits[1]) == self.size
else:
#if len(splits) != self.size + 1: continue
assert len(splits) == self.size + 1
word = splits[0]
embedding = np.array([float(s) for s in splits[1:]])
embedding_dict[word] = embedding
i += 1
f.close()
if vocab_size is not None:
assert vocab_size == len(embedding_dict)
print("Done loading word embeddings.")
return embedding_dict
def __getitem__(self, key):
if self._lowercase:
key = key.lower()
embedding = self._embeddings[key]
if self._normalize:
embedding = self.normalize(embedding)
return embedding
def normalize(self, v):
norm = np.linalg.norm(v)
if norm > 0:
return v / norm
else:
return v
class CustomLSTMCell(tf.contrib.rnn.RNNCell):
def __init__(self, num_units, batch_size, dropout):
self._num_units = num_units
self._dropout = dropout
self._dropout_mask = tf.nn.dropout(tf.ones([batch_size, self.output_size]), dropout)
self._initializer = self._block_orthonormal_initializer([self.output_size] * 3)
initial_cell_state = tf.get_variable("lstm_initial_cell_state", [1, self.output_size])
initial_hidden_state = tf.get_variable("lstm_initial_hidden_state", [1, self.output_size])
self._initial_state = tf.contrib.rnn.LSTMStateTuple(initial_cell_state, initial_hidden_state)
@property
def state_size(self):
return tf.contrib.rnn.LSTMStateTuple(self.output_size, self.output_size)
@property
def output_size(self):
return self._num_units
@property
def initial_state(self):
return self._initial_state
def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with tf.variable_scope(scope or type(self).__name__): # "CustomLSTMCell"
c, h = state
h *= self._dropout_mask
concat = projection(tf.concat([inputs, h], 1), 3 * self.output_size, initializer=self._initializer)
i, j, o = tf.split(concat, num_or_size_splits=3, axis=1)
i = tf.sigmoid(i)
new_c = (1 - i) * c + i * tf.tanh(j)
new_h = tf.tanh(new_c) * tf.sigmoid(o)
new_state = tf.contrib.rnn.LSTMStateTuple(new_c, new_h)
return new_h, new_state
def _orthonormal_initializer(self, scale=1.0):
def _initializer(shape, dtype=tf.float32, partition_info=None):
M1 = np.random.randn(shape[0], shape[0]).astype(np.float32)
M2 = np.random.randn(shape[1], shape[1]).astype(np.float32)
Q1, R1 = np.linalg.qr(M1)
Q2, R2 = np.linalg.qr(M2)
Q1 = Q1 * np.sign(np.diag(R1))
Q2 = Q2 * np.sign(np.diag(R2))
n_min = min(shape[0], shape[1])
params = np.dot(Q1[:, :n_min], Q2[:n_min, :]) * scale
return params
return _initializer
def _block_orthonormal_initializer(self, output_sizes):
def _initializer(shape, dtype=np.float32, partition_info=None):
assert len(shape) == 2
assert sum(output_sizes) == shape[1]
initializer = self._orthonormal_initializer()
params = np.concatenate([initializer([shape[0], o], dtype, partition_info) for o in output_sizes], 1)
return params
return _initializer