-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnred.v
309 lines (291 loc) · 12 KB
/
nred.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
(* This file formalises subsection 5.4, except lemma 5.31 which is
formalised at the end of botred.v. *)
Require Import crnf.
Require Import botred.
Require Import sim.
Require Import cases.
Section RedNu.
Variable U : term -> Prop.
Variable Hm : meaningless U.
Variable Hexp : forall x y, U y -> inf_beta x y -> U x.
Lemma lem_not_U_has_rnf : forall t, ~(U t) -> has_rnf t.
Proof.
clear Hexp.
intros.
enough (~~(has_rnf t)) by (pose has_rnf_xm; ycrush).
ycrush.
Qed.
Lemma lem_Hsm : strongly_meaningless U.
Proof.
unfold strongly_meaningless; ycrush.
Qed.
(* Definition 5.26 *)
CoInductive red_nu : term -> term -> Prop :=
| red_nu_var : forall t n (p : ~ U t), crnf t (lem_not_U_has_rnf t p) == (var n) -> red_nu t (var n)
| red_nu_app : forall t t1 t2 s1 s2 (p : ~ U t), crnf t (lem_not_U_has_rnf t p) == (app t1 t2) ->
red_nu t1 s1 -> red_nu t2 s2 -> red_nu t (app s1 s2)
| red_nu_abs : forall t t0 s (p : ~ U t), crnf t (lem_not_U_has_rnf t p) == (abs t0) ->
red_nu t0 s -> red_nu t (abs s)
| red_nu_U : forall t, U t -> red_nu t bot.
Lemma lem_red_nu_morphism : morphism red_nu.
Proof.
unfold morphism.
coinduct CH; intros.
- clear CH.
assert (HH: ~ U x').
destruct (strongly_meaningless_xm U lem_Hsm x'); auto.
assert (U x) by (pose lem_U_morphism; pose_term_eq; ycrush).
exfalso; eauto.
assert (crnf x' (lem_not_U_has_rnf x' HH) == var n).
pose lem_crnf_morphism; pose_term_eq; ycrush.
destruct y'; sauto.
eapply red_nu_var; pose_term_eq; eauto.
- assert (HH: ~ U x').
clear CH; destruct (strongly_meaningless_xm U lem_Hsm x'); auto.
assert (U x) by (pose lem_U_morphism; pose_term_eq; ycrush).
exfalso; eauto.
assert (crnf x' (lem_not_U_has_rnf x' HH) == app t1 t2).
clear CH; pose lem_crnf_morphism; pose_term_eq; ycrush.
destruct y'; try solve [ clear CH; sauto ].
inversion H4; subst; try solve [ exfalso; assumption ]; fold term_eq in *.
eapply red_nu_app with (t1 := t1) (t2 := t2).
* clear CH; eauto.
* eapply CH with (x := t1) (y := s1); solve [ assumption | reflexivity ].
* eapply CH with (x := t2) (y := s2); solve [ assumption | reflexivity ].
- assert (HH: ~ U x').
clear CH; destruct (strongly_meaningless_xm U lem_Hsm x'); auto.
assert (U x) by (pose lem_U_morphism; pose_term_eq; ycrush).
exfalso; eauto.
assert (crnf x' (lem_not_U_has_rnf x' HH) == abs t0).
clear CH; pose lem_crnf_morphism; pose_term_eq; ycrush.
destruct y'; try solve [ clear CH; sauto ].
inversion H3; subst; try solve [ exfalso; assumption ]; fold term_eq in *.
eapply red_nu_abs with (t0 := t0).
* clear CH; eauto.
* eapply CH with (x := t0) (y := s); solve [ assumption | reflexivity ].
- clear CH.
destruct y'; sauto.
assert (U x') by (pose lem_U_morphism; pose_term_eq; ycrush).
ycrush.
Qed.
Add Parametric Morphism : red_nu with
signature term_eq ==> term_eq ==> iff as red_nu_mor.
Proof.
split; intro; eapply lem_red_nu_morphism; pose_term_eq; eauto.
Qed.
Lemma lem_red_beta_bot_to_crnf : forall t (p : has_rnf t), red_beta_bot U t (crnf t p).
Proof.
Reconstr.reasy (lem_red_wh_to_red_beta, lem_red_beta_to_red_beta_bot, lem_red_wh_to_crnf) Reconstr.Empty.
Qed.
(* Lemma 5.27 *)
Lemma lem_red_nu_to_inf_beta_bot :
forall t s, red_nu t s -> inf_beta_bot U t s.
Proof.
pose lem_red_beta_bot_to_crnf; pose lem_red_beta_bot_morphism; pose lem_red_beta_bot_redex_U; pose_term_eq;
coinduction.
Qed.
Lemma lem_U_dec : forall t, {U t}+{~(U t)}.
Proof.
intro t.
enough ({ u : {U t}+{~(U t)} | True}) by ycrush.
apply constructive_indefinite_description.
destruct (strongly_meaningless_xm U lem_Hsm t); ycrush.
Qed.
CoFixpoint F_red_nu_reduct (t : term) : term.
destruct (lem_U_dec t) as [H | H].
- exact bot.
- destruct (crnf t (lem_not_U_has_rnf t H)) eqn:Ht.
+ exact bot.
+ exact (var n).
+ exact (app (F_red_nu_reduct t0_1) (F_red_nu_reduct t0_2)).
+ exact (abs (F_red_nu_reduct t0)).
Defined.
(* Lemma 5.28 *)
Lemma lem_red_nu_reduct : forall t, exists s, red_nu t s.
Proof.
enough (exists f, forall t, red_nu t (f t)) by ycrush.
exists F_red_nu_reduct.
cofix CH.
intro t.
peek (F_red_nu_reduct t).
destruct (lem_U_dec t) as [H | H].
- clear CH; constructor; assumption.
- destruct (crnf t (lem_not_U_has_rnf t H)) eqn:Ht.
+ clear CH; pose lem_crnf_not_bot; ycrush.
+ clear CH; eapply red_nu_var; pose_term_eq; ycrush.
+ econstructor.
* clear CH; pose_term_eq; ycrush.
* eapply CH.
* eapply CH.
+ econstructor.
* clear CH; pose_term_eq; ycrush.
* eapply CH.
Qed.
(* Lemma 5.29 *)
Lemma lem_red_nu_unique : forall t s1 s2, red_nu t s1 -> red_nu t s2 -> s1 == s2.
Proof.
coinduction CH using eauto.
- clear CH; intro HH2; destruct HH2.
+ pose lem_crnf_unique; pose_term_eq; eauto.
+ assert (var n == app t1 t2) by
(pose lem_crnf_unique; pose_term_eq; eauto).
exfalso; iauto 1.
+ assert (var n == abs t0) by
(pose lem_crnf_unique; pose_term_eq; eauto).
exfalso; iauto 1.
+ pose lem_crnf_unique; pose_term_eq; yelles 2.
- intro HH2; destruct HH2.
+ clear CH.
assert (HH: crnf t (lem_not_U_has_rnf t p) == crnf t (lem_not_U_has_rnf t p0)) by
(pose lem_crnf_unique; pose_term_eq; eauto).
rewrite HH in *; clear HH.
assert (app t1 t2 == var n) by (pose_term_eq; eauto).
exfalso; iauto 1.
+ assert (HH: crnf t (lem_not_U_has_rnf t p) == crnf t (lem_not_U_has_rnf t p0)) by
(clear CH; pose lem_crnf_unique; pose_term_eq; eauto).
assert (H4: app t1 t2 == app t0 t3) by
(clear CH; pose_term_eq; eauto).
inversion H4; [ exfalso; assumption | idtac ]; fold term_eq in *; subst.
rewrite H8 in *.
rewrite H10 in *.
apply par_clos_app; fold term_eq; eapply CH; clear CH; eauto.
+ clear CH.
assert (HH: crnf t (lem_not_U_has_rnf t p) == crnf t (lem_not_U_has_rnf t p0)) by
(pose lem_crnf_unique; pose_term_eq; eauto).
rewrite HH in *; clear HH.
assert (app t1 t2 == abs t0) by (pose_term_eq; eauto).
exfalso; iauto 1.
+ clear CH; yisolve.
- intro HH2; destruct HH2.
+ clear CH.
assert (HH: crnf t (lem_not_U_has_rnf t p) == crnf t (lem_not_U_has_rnf t p0)) by
(pose lem_crnf_unique; pose_term_eq; eauto).
rewrite HH in *; clear HH.
assert (abs t1 == var n) by (pose_term_eq; eauto).
exfalso; iauto 1.
+ assert (HH: crnf t (lem_not_U_has_rnf t p) == crnf t (lem_not_U_has_rnf t p0)) by
(clear CH; pose lem_crnf_unique; pose_term_eq; eauto).
assert (H4: abs t1 == app t0 t2) by
(clear CH; pose_term_eq; eauto).
clear CH; exfalso; iauto 1.
+ assert (HH: crnf t (lem_not_U_has_rnf t p) == crnf t (lem_not_U_has_rnf t p0)) by
(clear CH; pose lem_crnf_unique; pose_term_eq; eauto).
assert (H4: abs t1 == abs t0) by
(clear CH; pose_term_eq; eauto).
inversion H4; [ exfalso; assumption | idtac ]; fold term_eq in *; subst.
rewrite H6 in *.
apply par_clos_abs; fold term_eq; eapply CH; clear CH; eauto.
+ clear CH; yisolve.
Qed.
(* Lemma 5.30 *)
Lemma lem_red_nu_nf : forall t s, red_nu t s -> nf_beta_bot U s.
Proof.
unfold nf_beta_bot, nf, not.
intros t s H0 s0 H.
revert t H0.
induction H; intros t Ht; try yelles 1.
destruct H.
- inversion Ht; subst.
+ ycrush.
+ inversion H; subst.
inversion H3; subst; yisolve; fold term_eq in *.
rewrite H8 in *.
inversion H1; subst.
assert (HH: red_beta t1 (abs t5)) by
(clear -H6; pose lem_red_beta_to_crnf; pose_term_eq; ycrush).
clear -HH H0.
assert (is_rnf (crnf t (lem_not_U_has_rnf t p))) by
(pose lem_crnf_is_crnf; unfold is_crnf in *; ycrush).
rewrite H0 in *.
unfold is_rnf in *.
pose_inf_beta; ycrush.
+ ycrush.
+ ycrush.
- unfold bot_redex in *; simp_hyps.
assert (inf_beta_bot U t x) by
Reconstr.reasy (@RedNu.lem_red_nu_to_inf_beta_bot) Reconstr.Empty.
assert (U t) by
(eapply cor_inf_beta_bot_preserves_U_rev; ycrush).
ycrush.
Qed.
Lemma lem_red_nu_inf_beta_bot_prepend_U :
forall t t' s, U t -> inf_beta_bot U t t' -> red_nu t' s -> red_nu t s.
Proof.
intros.
assert (U t').
pose lem_inf_beta_bot_preserves_U; pose_inf_beta_bot; ycrush.
inversion H1; ycrush.
Qed.
(* Lemma 5.32 *)
Lemma lem_red_nu_inf_beta_bot_prepend : forall t t' s, inf_beta_bot U t t' -> red_nu t' s -> red_nu t s.
Proof.
cofix CH.
intros t t' s H1 H2.
destruct (strongly_meaningless_xm U lem_Hsm t).
- clear CH; pose lem_red_nu_inf_beta_bot_prepend_U; ycrush.
- assert (~U t') by
(clear CH; unfold not in *; intro; apply H;
eapply cor_inf_beta_bot_preserves_U_rev; ycrush).
assert (Hr: has_rnf t') by
(clear CH; Reconstr.reasy (@RedNu.lem_not_U_has_rnf) Reconstr.Empty).
assert (red_wh t' (crnf t' Hr)) by
(clear CH; pose lem_red_wh_to_crnf; ycrush).
assert (inf_beta_bot U t (crnf t' Hr)) by
(clear CH; pose cor_inf_beta_bot_append_red_beta; pose lem_red_wh_to_red_beta; ycrush).
assert (HH: exists r, inf_beta t r /\ par_bot U r (crnf t' Hr)) by
(clear CH; Reconstr.rcrush (@botred.lem_inf_beta_bot_decompose, @RedNu.lem_not_U_has_rnf) (@defs.root_active, @defs.meaningless, @RedNu.F_red_nu_reduct, @defs.has_rnf)).
destruct HH as [r [HH1 HH2]].
assert (is_rnf (crnf t' Hr)) by
(clear CH; generalize (lem_crnf_is_crnf t' Hr); unfold is_crnf; ycrush).
assert (HH: is_rnf r \/ U r) by
(clear CH; eapply lem_par_bot_preserves_rnf_rev; try yelles 1; intro t0; destruct (strongly_meaningless_xm U lem_Hsm t0); ycrush).
destruct HH.
+ assert (Hp: has_rnf t) by
(clear CH; ycrush).
assert (is_crnf t (crnf t Hp)) by
(clear CH; pose lem_crnf_is_crnf; ycrush).
assert (inf_wh (crnf t Hp) r) by
(clear CH; pose lem_crnf_property; ycrush).
assert (inf_beta_bot U (crnf t Hp) (crnf t' Hr)) by
(clear CH; pose lem_inf_wh_to_inf_beta; pose lem_inf_beta_to_inf_beta_bot;
pose lem_inf_beta_bot_append_par_bot; ycrush).
inversion H2; subst.
* clear CH.
assert (crnf t' Hr == var n) by
(pose lem_crnf_unique; pose_term_eq; ycrush).
assert (inf_beta_bot U (crnf t Hp) (var n)) by
(pose lem_inf_beta_bot_morphism; pose_term_eq; ycrush).
assert (crnf t Hp == var n) by
(pose lem_inf_beta_bot_rnf_to_var; ycrush).
assert (crnf t (lem_not_U_has_rnf t H) == var n) by
(pose lem_crnf_unique; pose_term_eq; ycrush).
econstructor; ycrush.
* assert (crnf t' Hr == app t1 t2) by
(clear CH; pose lem_crnf_unique; pose_term_eq; ycrush).
assert (inf_beta_bot U (crnf t Hp) (app t1 t2)) by
(clear CH; pose lem_inf_beta_bot_morphism; pose_term_eq; ycrush).
assert (HH: exists x y, crnf t Hp = app x y /\ inf_beta_bot U x t1 /\ inf_beta_bot U y t2) by
(clear CH; apply lem_inf_beta_bot_rnf_to_app; ycrush).
destruct HH as [x [y [He1 [He2 He3]]]].
assert (crnf t (lem_not_U_has_rnf t H) == app x y) by
(clear CH; pose lem_crnf_unique; pose_term_eq; ycrush).
econstructor.
** eassumption.
** eapply CH; clear CH; eauto.
** eapply CH; clear CH; eauto.
* assert (crnf t' Hr == abs t1) by
(clear CH; pose lem_crnf_unique; pose_term_eq; ycrush).
assert (inf_beta_bot U (crnf t Hp) (abs t1)) by
(clear CH; pose lem_inf_beta_bot_morphism; pose_term_eq; ycrush).
assert (HH: exists x, crnf t Hp = abs x /\ inf_beta_bot U x t1) by
(clear CH; apply lem_inf_beta_bot_rnf_to_abs; ycrush).
destruct HH as [x [He1 He2]].
assert (crnf t (lem_not_U_has_rnf t H) == abs x) by
(clear CH; pose lem_crnf_unique; pose_term_eq; ycrush).
econstructor.
** eassumption.
** eapply CH; clear CH; eauto.
* clear CH; ycrush.
+ clear CH; pose lem_red_nu_inf_beta_bot_prepend_U; ycrush.
Qed.
End RedNu.