-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpp.py
126 lines (113 loc) · 4.52 KB
/
pp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from __future__ import print_function, division
import os
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT']='0'
import argparse
import cv2
import mxnet as mx
import numpy as np
import pandas as pd
from lib.model import load_model, multi_scale_predict
from lib.utils import draw_heatmap, draw_kps, draw_paf, crop_patch
from lib.detect_kps import detect_kps
from lib.config import cfg
from lib.dataset import get_border
def calc_error(kps_pred, kps_gt, category):
dist = lambda dx, dy: np.sqrt(np.square(dx) + np.square(dy))
idx1, idx2 = cfg.EVAL_NORMAL_IDX[category]
if kps_gt[idx1, 2] == -1 or kps_gt[idx2, 2] == -1:
return 0, None, False
norm = dist(kps_gt[idx1, 0] - kps_gt[idx2, 0], kps_gt[idx1, 1] - kps_gt[idx2, 1])
idx = np.where(kps_gt[:, 2] == 1)[0]
kps_gt = kps_gt[idx]
kps_pred = kps_pred[idx]
if len(idx) == 0:
# all occ
return 0, None, False
error = dist(kps_pred[:, 0] - kps_gt[:, 0], kps_pred[:, 1] - kps_gt[:, 1])
error[kps_pred[:, 2] == -1] = norm # fill missing with norm, so error = 1
error = error / norm
return error, idx, True
def read_csv(path):
df = pd.read_csv(path)
# img path
img_lst = df['image_id'].tolist()
category = df['image_category'].tolist()
# kps, (x, y, v) v -> (not exists -1, occur 0, normal 1)
cols = df.columns[2:]
kps = []
for i in range(cfg.NUM_LANDMARK):
for j in range(3):
kps.append(df[cols[i]].apply(lambda x: int(x.split('_')[j])).as_matrix())
kps = np.vstack(kps).T.reshape((len(img_lst), -1, 3)).astype(np.float)
return img_lst, kps, category
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gt', type=str, default='./data/val.csv')
parser.add_argument('--pred', type=str, default='./result/tmp_val_result.csv')
parser.add_argument('--th', type=float, default=0.04)
parser.add_argument('--model', type=str)
parser.add_argument('--version', type=int, default=2)
parser.add_argument('--scale', type=int, default=0)
args = parser.parse_args()
print(args)
img_lst, kps_gt, category = read_csv(args.gt)
_, kps_pred, _ = read_csv(args.pred)
assert len(kps_gt) == len(kps_pred)
# model
if args.model:
ctx = mx.gpu(0)
net = load_model(args.model, version=args.version, scale=args.scale)
net.collect_params().reset_ctx(ctx)
net.hybridize()
th = args.th
num_category = len(cfg.CATEGORY)
num_landmark = cfg.NUM_LANDMARK
result = [[] for _ in range(num_category)]
kps_result = [[] for _ in range(num_landmark)]
for img_id, gt, pred, cate in zip(img_lst, kps_gt, kps_pred, category):
cate_idx = cfg.CATEGORY.index(cate)
err, idx, state = calc_error(pred, gt, cate)
if state:
result[cate_idx].append(err)
for i, e in zip(idx, err):
kps_result[i].append(e)
if args.model and err.mean() > th:
# ori
print('-------------------------')
for i, e in zip(idx, err):
print(i, e, gt[i, :2], pred[i, :2])
print('mean1', err.mean())
# model
img = cv2.imread('./data/' + img_id)
heatmap, paf = multi_scale_predict(net, ctx, img, True)
pred = detect_kps(img, heatmap, paf, cate)
err, idx, state = calc_error(pred, gt, cate)
for i, e in zip(idx, err):
print(i, e, gt[i, :2], pred[i, :2])
print('mean2', err.mean())
print('-------------------------')
# show
landmark_idx = cfg.LANDMARK_IDX[cate]
heatmap = heatmap[landmark_idx].max(axis=0)
cv2.imshow('heatmap', draw_heatmap(img, heatmap))
cv2.imshow('kps_pred', draw_kps(img, pred))
cv2.imshow('kps_gt', draw_kps(img, gt))
cv2.imshow('paf', draw_paf(img, paf))
key = cv2.waitKey(0)
if key == 27:
break
# per landmark
for i in range(num_landmark):
err = np.array(kps_result[i]).mean()
print('Average Error for %d: %f' % (i, err))
# per category
result = [np.hstack(_) for _ in result]
for i in range(num_category):
category = cfg.CATEGORY[i]
err = result[i].mean()
print('Average Error for %s: %f' % (category, err))
result = np.hstack(result)
err = result.mean()
print('Total Average Error %f' % err)
if __name__ == '__main__':
main()