-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun.py
157 lines (134 loc) · 5.22 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import logging
import os
import sys
from contextlib import nullcontext
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from transformers import AutoConfig, AutoTokenizer
from transformers import (
HfArgumentParser,
set_seed,
)
from dense.arguments import ModelArguments, DataArguments, \
DenseTrainingArguments as TrainingArguments
from dense.data import TrainDataset, EncodeDataset, QPCollator, EncodeCollator
from dense.modeling import DenseModel, DenseOutput
from dense.trainer import DenseTrainer as Trainer
logger = logging.getLogger(__name__)
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
logger.info("MODEL parameters %s", model_args)
set_seed(training_args.seed)
num_labels = 1
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=False,
)
model = DenseModel.build(
model_args,
data_args,
training_args,
config=config,
cache_dir=model_args.cache_dir,
)
if training_args.do_train:
train_dataset = TrainDataset(
data_args, data_args.train_path, tokenizer
)
else:
train_dataset = None
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=QPCollator(
tokenizer,
max_p_len=data_args.p_max_len,
max_q_len=data_args.q_max_len
),
)
if train_dataset is not None:
train_dataset.trainer = trainer
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir)
if training_args.do_encode:
if training_args.local_rank > 0 or training_args.n_gpu > 1:
raise NotImplementedError('Parallel encoding is not supported.')
text_max_length = data_args.q_max_len if data_args.encode_is_qry else data_args.p_max_len
encode_dataset = EncodeDataset(data_args.encode_in_path, tokenizer, max_len=text_max_length)
encode_loader = DataLoader(
encode_dataset,
batch_size=training_args.per_device_eval_batch_size,
collate_fn=EncodeCollator(
tokenizer,
max_length=text_max_length,
padding='max_length'
),
shuffle=False,
drop_last=False,
num_workers=training_args.dataloader_num_workers,
)
encoded = []
lookup_indices = []
model = model.to(training_args.device)
model.eval()
for (batch_ids, batch) in tqdm(encode_loader):
lookup_indices.extend(batch_ids)
with torch.cuda.amp.autocast() if training_args.fp16 else nullcontext():
with torch.no_grad():
for k, v in batch.items():
batch[k] = v.to(training_args.device)
if data_args.encode_is_qry:
model_output: DenseOutput = model(query=batch)
encoded.append(model_output.q_reps.cpu())
else:
model_output: DenseOutput = model(passage=batch)
encoded.append(model_output.p_reps.cpu())
encoded = torch.cat(encoded)
torch.save((encoded, lookup_indices), data_args.encoded_save_path)
if __name__ == "__main__":
main()