Skip to content

lxyea/Deep_Learning

Repository files navigation

Neural Networks for Machine Learning

Improving Deep Neural Networks_Hyperparameter Tuning_Regularization and Optimization

structuring machine learning projects

convolutional neural networks

Deep Learning

  • Neural Networks and Deep Learning
  • Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
  • Structuring Machine Learning Projects
  • Convolutional Neural Networks
  • Sequence Models

Deep Learning - deeplearning.ai

Coursera Deep Learning Course by deeplearning.ai projects

Course 1. Neural Networks and Deep Learning

  1. Week1 - Introduction to deep learning
  2. Week2 - Neural Networks Basics
  3. Week3 - Shallow neural networks
  4. Week4 - Deep Neural Networks

Course 2. Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization

  1. Week1 - Practical aspects of Deep Learning - Setting up your Machine Learning Application - Regularizing your neural network - Setting up your optimization problem
  2. Week2 - Optimization algorithms
  3. Week3 - Hyperparameter tuning, Batch Normalization and Programming Frameworks

Course 3. Structuring Machine Learning Projects

  1. Week1 - Introduction to ML Strategy - Setting up your goal - Comparing to human-level performance
  2. Week2 - ML Strategy (2) - Error Analysis - Mismatched training and dev/test set - Learning from multiple tasks - End-to-end deep learning

Course 4. Convolutional Neural Networks

  1. Week1 - Foundations of Convolutional Neural Networks
  2. Week2 - Deep convolutional models: case studies
  3. Week3 - Object detection - Papers for read: You Only Look Once: Unified, Real-Time Object Detection, YOLO
  4. Week4 - Special applications: Face recognition & Neural style transfer - Papers for read: DeepFace, FaceNet

Course 5. Sequence Models


source from Andrew Ng's Deep learning course on Coursera

About

Deep Learning Specialization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published