forked from creaktive/flare
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathogntp_demod.c
481 lines (443 loc) · 22.3 KB
/
ogntp_demod.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
/* nrf905_demod, demodulator for nRF905 Single chip 433/868/915MHz Transceiver
*
* Copyright (C) 2014 Stanislaw Pusep
* Altered to work with OGN tracker by Linar Yusupov in 2017.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <complex.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
/* Some subs are subs for organizational purposes only. They're not intended
* to be reused. GCC 4.8 seems smart enough to figure it out on it's own,
* but just in case, let's manually assure these are inlined.
*/
#define forceinline __inline__ __attribute__((always_inline)) static
/* "Magic" constants... These come directly or indirectly from the nRF905
* specification. Here is a simplified explanation about how this program works.
* First of all, nRF905 sends two kinds of pulses: mark & space. Mark means "1"
* symbol and space means "0" (or vice-versa; who cares, more on this later).
* If you tune nRF905 to use 868.2MHz (AKA "channel 117"), space is sent at a
* slightly lower frequency (868.15MHz) while mark is sent at a slightly higher
* one (868.25MHz). There's nothing interesting at exactly 868.2MHz (at least,
* not for this program). So, fact #1: there's 100KHz separation between mark
* & space.
* Then, enter the sample rate. If we read 1 million of samples every second
* (1MHz sample rate) each symbol (and therefore, mark/space pulse) will be
* spread across just 10 samples. This means that we only have a serie of
* 10 values to figure out the frequency. By the way, this serie is in
* "time domain". Fourier transform turns it into "frequency domain".
* But for 10 input values, it will produce 10 output values.
* Thus, 10 samples => 10 frequencies. Which frequencies? Intuitively enough,
* our 1MHz sample rate is equally split in 10 "bins" spaced by 100KHz.
* Fact #2: each symbol has just enough samples to make it possible to
* discriminate mark/space. Which means that we can tune to 868.15MHz, and
* "bin 0" will filter our spaces, and "bin 1" will filter our marks...
* Except we can not use "bin 0", because it is somewhat special (DC).
* Instead, we tune to 868.05MHz and get "bin 1" as space and "bin 2" as mark.
* Then we get "bin 3" and "bin 4" as space & mark for the next channel
* (868.4MHz, AKA "channel 118"). And perhaps the next channel... And so on
* until "bin 6", which wraps and gets us a "negative frequency" (that is,
* something below 868.05MHz that we're tuned to). Let's not talk about bins
* 6-10 for now.
* Finally, fact #3: computers are not impressed when we round up our
* arithmetics to 10, they prefer 16. That's why the sampling rate is 1.6MHz
* and we have 16 samples per symbol.
*/
#define symbol_samples (16)
#define symbol_rate (100000)
#define max_packet_bytes (29)
#define preamble_bits (24)
#define packet_samples (symbol_samples * 2 * (preamble_bits + max_packet_bytes * 8))
#define dft_points (symbol_samples)
#define sample_rate (symbol_rate * symbol_samples)
#define buffer_size (1 << 13)
#define smooth_buffer_size (1 << 3)
#define average_n (7)
#if buffer_size < packet_samples
#error "Adjust buffer_size to fit at least one packet + preamble!"
#endif
#if (buffer_size & (buffer_size - 1)) || (smooth_buffer_size & (smooth_buffer_size - 1))
#error "buffer sizes has to be a power of 2!"
#endif
/* Here we store the precomputed coefficients for Discrete Fourier Transform.
* "But isn't it terribly slow?!" Glad you asked; in this specific case,
* DFT is actually faster than FFT! That is because due to the nature of the
* demodulator, we can reuse the results of the computation of the previous
* samples. Besides that, we don't need all the 16 frequency bins for the 16
* samples, just 2 (mark/space) per channel.
*/
static complex float coeffs[dft_points];
/* Intermediary values of the signal demodulation process are stored in
* circular buffers. It works by overwriting the oldest values with the newest
* ones. Each circular buffer allocates 2 variables: the buffer (prefixed with
* "cb_buf_") and the current element index (prefixed with "cb_idx_").
*/
static complex float cb_buf_iq[buffer_size];
static uint16_t cb_idx_iq;
/* Circular buffer accessors. These are macros instead of subroutines mainly
* because there are many different data types for buffers to handle. Raw I/Q
* samples are complex, magnitudes are integer, decoded bits are characters.
* cb_write(buffer_name, X) inserts X into the last position of the buffer.
* cb_readn(buffer_name, N) reads from Nth position of the buffer, where 0 is
* the last position, 1 is the previous position, and so on.
*/
#define cb_mask(n) (sizeof(cb_buf_##n) / sizeof(cb_buf_##n[0]) - 1)
#define cb_write(n, v) (cb_buf_##n[(cb_idx_##n++) & cb_mask(n)] = (v))
#define cb_readn(n, i) (cb_buf_##n[(cb_idx_##n + (~i)) & cb_mask(n)])
/* To make any sense of the output, complex number has to be "squashed" into
* good old float. However, we do not use sqrt() because it is too expensive!
*/
#define magnitude(v) (creal(v) * creal(v) + cimag(v) * cimag(v))
/* Each nRF905 transmission starts with a pattern called "preamble". It is
* something that is clearly distinguishable from the noise. In this case,
* alternation of "0" and "1" symbols. We just try to match this specific bit
* pattern against the RF stream. Almost like a regular expression.
*/
const uint8_t preamble_pattern[preamble_bits] = {
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
};
/* Runtime configuration globals.
*/
static uint8_t packet_bytes = 0, use_crc = 1;
// every row represents a parity check to be performed on the received codeword
static const uint32_t LDPC_ParityCheck_n208k160[48][7]
= { // parity check vectors: 48 vectors for 48 parity checks
// Eaech vector applied to the data packet should yield even number of bits
{ 0x00000805, 0x00000020, 0x04000000, 0x20000000, 0x00000040, 0x00044020, 0x00000000 },
{ 0x00000001, 0x00800800, 0x00000000, 0x00000000, 0x00000000, 0x10010000, 0x00008C98 },
{ 0x00004001, 0x01000080, 0x80000400, 0x00000000, 0x08000200, 0x00200000, 0x00000005 },
{ 0x00000101, 0x20000200, 0x00000022, 0x00000000, 0x00000000, 0xCC008000, 0x00005002 },
{ 0x00000401, 0x00000000, 0x00004900, 0x00000020, 0x00000000, 0x20C00349, 0x00000020 },
{ 0x03140001, 0x00000002, 0x00000000, 0x40000001, 0x41534100, 0x00102C00, 0x00002000 },
{ 0x04008800, 0x82000642, 0x00000000, 0x00000020, 0x88040020, 0x03000010, 0x00000400 },
{ 0x00000802, 0x20000000, 0x02000014, 0x01200000, 0x04000403, 0x00800004, 0x0000A004 },
{ 0x02020820, 0x00000000, 0x80020820, 0x10190040, 0x30000000, 0x00000002, 0x00000900 },
{ 0x40804950, 0x00090000, 0x00000000, 0x00021204, 0x40001000, 0x10001100, 0x00000000 },
{ 0x08000A00, 0x00020008, 0x00040000, 0x02400010, 0x01002000, 0x40280280, 0x00000010 },
{ 0x00000000, 0x00008010, 0x118000A0, 0x00040080, 0x01000084, 0x00040100, 0x00000444 },
{ 0x20040108, 0x18000000, 0x08608800, 0x0000000A, 0x08000010, 0x00040080, 0x00008000 },
{ 0x00004080, 0x00422201, 0x00010000, 0x0000A400, 0x00400800, 0x00840000, 0x00000800 },
{ 0x00000000, 0x60200000, 0x80100240, 0x08000021, 0x02800000, 0x100C0000, 0x00000000 },
{ 0x00001000, 0x01010002, 0x00082001, 0x04000000, 0x00000001, 0x00040002, 0x00004030 },
{ 0x00002300, 0x04000000, 0xA0080000, 0x20004000, 0x00028000, 0x00800000, 0x00000400 },
{ 0x00004000, 0x00104100, 0x40041028, 0x24000020, 0x00200000, 0x00100000, 0x00008000 },
{ 0x08011000, 0x20040000, 0x00000000, 0xA0800000, 0x08090000, 0x00000100, 0x00000A00 },
{ 0x10180000, 0x00000204, 0x00002800, 0x20400800, 0x00000000, 0x10000000, 0x00000004 },
{ 0x00000000, 0xC0000000, 0x10200000, 0x20028000, 0x20000000, 0x80000008, 0x00002011 },
{ 0x82004000, 0x20000000, 0x04202000, 0x00000000, 0x00000000, 0x00020200, 0x00000400 },
{ 0x08600000, 0x00001200, 0x94000000, 0x00000000, 0x40000008, 0x00000000, 0x00008020 },
{ 0x04040000, 0x04010000, 0x04100000, 0x00000100, 0x00200000, 0x40000008, 0x00000804 },
{ 0x00000200, 0x00000110, 0x04000100, 0x00000000, 0x28400400, 0x10000000, 0x00004000 },
{ 0x00080000, 0x00000080, 0x04001000, 0x01882007, 0x00008024, 0x04000001, 0x00000010 },
{ 0x20200000, 0x00000020, 0x00010040, 0x81000800, 0x10001000, 0x00300008, 0x00004400 },
{ 0x90000010, 0x89841021, 0x00000118, 0x08080000, 0x00020000, 0x40000000, 0x00000040 },
{ 0x04C20000, 0x10404034, 0x00000000, 0x00004000, 0x00810001, 0x04000200, 0x00000009 },
{ 0x40102000, 0x020020A0, 0x40100000, 0x00100080, 0x00080400, 0x80030080, 0x00000020 },
{ 0x00010000, 0x04020920, 0x00000200, 0x00060000, 0x00000218, 0x01002007, 0x00001000 },
{ 0x00020008, 0x00A08040, 0x00080000, 0x40001400, 0x04200040, 0x80200001, 0x00000200 },
{ 0x40000402, 0x01100000, 0x20808000, 0x00008000, 0x10100060, 0x00080000, 0x00001008 },
{ 0x200010A0, 0x00000000, 0x01040100, 0x00000104, 0x02040042, 0x08012000, 0x00000001 },
{ 0x01000000, 0x50000880, 0x00000092, 0x14400000, 0x00001840, 0x02400000, 0x00000000 },
{ 0x00000010, 0x02000000, 0x00014000, 0x00200018, 0x00000240, 0x04000800, 0x00000180 },
{ 0x00008000, 0x00880008, 0x08000044, 0x00100000, 0x00000004, 0x00400820, 0x00001001 },
{ 0x01000000, 0x00002000, 0x02004001, 0x00000042, 0x00000000, 0x09201020, 0x00000048 },
{ 0x00800000, 0x01000400, 0x00400002, 0xC0002000, 0x00002080, 0x00010064, 0x00000100 },
{ 0x00000400, 0x08400840, 0x00000400, 0x00000890, 0x00008102, 0x00000020, 0x00000002 },
{ 0x00200040, 0x00000081, 0x00000000, 0x02050000, 0x04940000, 0x20008020, 0x00000080 },
{ 0x00000404, 0x00800000, 0x00001000, 0x00014000, 0x00082200, 0x0A000400, 0x00000000 },
{ 0x0000A024, 0x00000000, 0x00000402, 0x08A01000, 0x00004010, 0x20000000, 0x00000008 },
{ 0x00480046, 0x00008000, 0x00000208, 0x00000048, 0x00000000, 0x00410010, 0x00000002 },
{ 0x0000008C, 0x00044C00, 0x00824004, 0x00000200, 0x00000000, 0x00028000, 0x00000000 },
{ 0x10010004, 0x00080000, 0x43008000, 0x10000400, 0x80000100, 0x00000040, 0x00000080 },
{ 0x80000000, 0x0020000C, 0x20420480, 0x00000100, 0x00000008, 0x00005410, 0x00000080 },
{ 0x00000000, 0x00101000, 0x08000001, 0x02000200, 0x82004A80, 0x00004000, 0x00000202 }
} ;
const uint8_t ByteCount1s[256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
} ;
inline uint8_t Count1s(uint8_t Byte) { return ByteCount1s[Byte]; }
uint8_t LDPC_Check(const uint8_t *Data) // 20 data bytes followed by 6 parity bytes
{ uint8_t Errors=0;
for(uint8_t Row=0; Row<48; Row++)
{ uint8_t Count=0;
const uint8_t *Check = (uint8_t *)LDPC_ParityCheck_n208k160[Row];
for(uint8_t Idx=0; Idx<26; Idx++)
{ uint8_t And = Data[Idx]&Check[Idx]; Count+=Count1s(And); }
if(Count&1) Errors++; }
return Errors; }
/* Subroutine: output()
* Description: print the decoded packet, timestamp, RSSI and channel ID
* Input:
* packet: buffer with packet bytes
* length: size of the packet
* channel: ordinal of the channel buffer
* Output: none
*/
void output(const uint8_t *packet, const uint16_t length, const uint8_t channel) {
uint16_t i, j;
char output[128], *p;
struct timeval tv;
double timestamp, rms;
for (i = 0, p = output; i < length; i++, p += 2)
snprintf(p, 3, "%02x", packet[i]);
/* Since all the data was already in the buffer, compensate the timestamp
* subtracting the "time on the wire".
*/
gettimeofday(&tv, NULL);
timestamp = tv.tv_sec + tv.tv_usec / 1e6;
timestamp -= (buffer_size / sample_rate) * 2;
/* "RMS" as in "Root Mean Square".
* Estimate the power of the signal we've just decoded.
*/
for (j = 0, rms = 0; j < packet_samples; j++)
rms += magnitude(cb_readn(iq, j));
rms /= packet_samples;
snprintf(output + i * 2, sizeof(output) + i * 2,
"\t%.06f\t%.01f\t%d",
timestamp,
20.0 * log10(sqrt(rms) / 181.019336), // almost certainly wrong
channel + 117 // freq = (422.4 + (CH_NO / 10)) * (1 + HFREQ_PLL) MHz
);
puts(output);
fflush(stdout);
}
/* Subroutine: bit_slicer()
* Description: recover bits from the channel
* Input:
* channel: up to 2 channels are supported for now
* amplitude: sample value
* Output: none
*/
forceinline void bit_slicer(const uint8_t channel, const int32_t amplitude) {
/* Why is everything so "static"? As mentioned in the "forceinline"
* comment way above, these subroutines are not real subroutines. Thus we
* need to use "static" in order to preserve the buffer contents. Or use
* global variables.
* The best part is why the 'packet' buffer is also "static": nRF905
* resends the packets (sometimes on different channels). If we miss some
* bits on the first try, perhaps we manage to get them on the second
* attempt. Note that this is only possible because we differentiate
* "0" from "1" from "missing" during the decoding step!
*/
static int32_t cb_buf_pcm[2][smooth_buffer_size];
static uint16_t cb_idx_pcm[2];
static uint8_t cb_buf_bit[2][buffer_size];
static uint16_t cb_idx_bit[2];
static int32_t sliding_sum[2];
static uint16_t skip_samples[2];
static uint8_t packet[max_packet_bytes];
uint16_t i, j, k;
uint16_t bad_manchester;
uint32_t ldp;
/* Simplest possible noise filter (at least, in software): sliding average.
*/
cb_write(pcm[channel], amplitude);
sliding_sum[channel] -= cb_readn(pcm[channel], average_n);
sliding_sum[channel] += amplitude;
/* Input for bit_slicer() is the magnitude at the space pulse frequency minus
* the magnitude at the mark pulse frequency. If this value is positive,
* the space signal is stronger than the mark signal. Thus, by convention,
* we have the "0" symbol. Same thing happens for the "1" symbol.
* However, these symbols are not bits yet: actual bits are encoded using
* the Manchester coding.
*/
cb_write(bit[channel], sliding_sum[channel] > 0 ? 1 : 0);
/* Don't reprocess samples if we already decoded this as a valid message.
* This saves a lot of processing time, specially when dealing with busy
* channels.
*/
if (skip_samples[channel]) {
skip_samples[channel]--;
return;
}
/* Attempt to match the preamble bit pattern. Bail out on the first
* discrepancy to spare CPU cycles. This is the hottest code path
* (most CPU-intensive).
*/
for (
i = packet_samples, j = 0;
j < preamble_bits;
i -= symbol_samples, j++
) {
if (preamble_pattern[j] != cb_readn(bit[channel], i))
return;
}
/* When the preamble looks like valid, attempt to decode the rest of the
* packet. All the bits (including the preamble) are Manchester-coded.
* This means that the symbol values do not matter, only symbol transitions
* do encode the actual bits. For instance, "01" means "1", while "10" means
* "0". Both "00" and "11" are invalid, when one of these is detected, the
* bit is skipped (and the bit from the previous decoding attempt for this
* position is used). If there are too many invalid bits, probably the
* thing interpreted as preamble was a fluctuation in randomness, so we
* bail out. And yes, preamble is also Manchester-coded, in case you're
* wondering. nRF905 preamble is usually stated as having 10 bits. But
* Manchester-coded nRF905 preamble has 20 bits.
*/
bad_manchester = 0;
for (
i = packet_samples - preamble_bits * symbol_samples, j = 0;
i > symbol_samples;
i -= symbol_samples * 2, j++
) {
k = j / 8;
if (cb_readn(bit[channel], i) != cb_readn(bit[channel], i + symbol_samples)) {
// valid Manchester
if (cb_readn(bit[channel], i)) {
// set to 1
packet[k] |= (1 << (7 - (j & 7)));
} else {
// set to 0
packet[k] &= ~(1 << (7 - (j & 7)));
}
} else {
// heuristic, skip if too many bit encoding errors
if (++bad_manchester > j / 2)
return;
}
/* At the end of every 8-bit chunk, update CRC checksum. When the
* checksum is (looks like) correct, proceed and output the packet
* bytes, regardless the packet size. It is quite possible that some
* incompletely processed packet appears to have a correct CRC.
* If the desired packet size is known/fixed and/or CRC is unavailable,
* it is possible to use packet size as the "packet received" condition.
*/
if ((j & 7) == 7) {
k++;
if (k == (packet_bytes ? packet_bytes : k)) {
ldp = LDPC_Check((uint8_t *) &packet[3]);
if (!use_crc || !ldp) {
output((const uint8_t *) packet, k, channel);
skip_samples[channel] = symbol_samples * 2 * (preamble_bits + k * 8);
/* memset((void *) packet, 0, sizeof(packet)); */
return;
}
}
}
}
}
/* Subroutine: sliding_dft()
* Description: transform the signal from time domain to frequency domain
* Input:
* i_sample: In-Phase component
* q_sample: Quadrature component
* Output: none
*/
forceinline void sliding_dft(const int8_t i_sample, const int8_t q_sample) {
complex float sample, prev_sample;
uint16_t i;
static complex float dft[dft_points];
/* Each raw I/Q ("In-Phase/Quadrature") sample pair from the RTL-SDR dongle
* is stored as one complex float. Samples are not normalized (meaning the
* values are not within the range [0,1]) because division is expensive.
*/
__real__ sample = i_sample;
__imag__ sample = q_sample;
cb_write(iq, sample);
/* Compute the Discrete Fourier Transform for the last 'dft_points' samples.
* This works more-or-less like the moving average; instead of recalculating
* the entire thing for every 'dft_points' samples, we "add" the recent ones
* and "subtract" the oldest ones. Also, we don't compute the frequency bins
* for the frequencies we don't use, anyway.
* What kind of sorcery is this?! \(o_O)/
* Unfortunately, there's a downside: the frequency resolution is locked
* to the amount of samples per symbol. With Fast Fourier Transform, it is
* possible to apply some smart "window function" to overcome the resolution
* limitations. With Sliding DFT, the only practical window function is the
* rectangular one (AKA "none at all"). But, again, it is just enough to
* get the 100KHz resolution.
*/
prev_sample = cb_readn(iq, dft_points);
for (i = 1; i <= 4; i++)
dft[i] = (dft[i] - prev_sample + sample) * coeffs[i];
/* TODO: implement threads.
* Now that the channels are separated, each one can be handled by
* a different CPU. If only we have more than one CPU.
* How this works: for each channel, we subtract the power of signal at
* the mark frequency from the power of signal at the space frequency.
* This way, the noise floor (which is expected to be more-or-less the same
* at both frequencies) cancels out. It is feasible to use either mark
* or space frequencies alone, but that would require extra computation
* to tell signal apart from the noise floor.
*/
bit_slicer(0, magnitude(dft[1]) - magnitude(dft[2])); // power at bins 1 & 2
bit_slicer(1, magnitude(dft[3]) - magnitude(dft[4])); // power at bins 3 & 4
}
/* Subroutine: main()
* Description: get chunks of data from STDIN and forward to sliding_dft()
* Input:
* argc: argument counter
* argv: array of arguments
* Output: exit code
*/
int main(int argc, char **argv) {
uint16_t i;
size_t len;
uint8_t raw_buffer[buffer_size * 2]; // each I/Q sample has two bytes!
int8_t param;
/* Accepts packet size as a parameter. When specified, the decoded packet
* have to have this exact size and a valid CRC-16. When negative, only
* the packet size is checked, and CRC-16 is not computed.
*/
if (argc == 2) {
param = atoi(argv[1]);
packet_bytes = abs(param);
use_crc = param == packet_bytes;
if (packet_bytes > max_packet_bytes) {
fprintf(stderr, "can't decode more than %d bytes\n", max_packet_bytes);
return 2;
}
} else if (argc > 2) {
fprintf(stderr, "usage: %s [PACKET_BYTES]\n", argv[0]);
return 1;
}
/* Pre-compute the DFT coefficients. We will only use some of them in
* sliding_dft().
*/
for (i = 0; i < dft_points; i++)
coeffs[i] = cexp(I * 2. * M_PI * i / dft_points);
/* Read chunks of data piped from rtl_sdr utility and call sliding_dft()
* for each sample. The data comes in I/Q pairs, like: IQIQIQIQIQ...
* Individual values (either I or Q) range is (0, 255), and to convert to
* signed we need to subtract 127. No idea why RTL-SDR dongle doesn't use
* signed integer by default (looks like the hardware itself returns the
* data in this way).
*/
while (!feof(stdin)) {
len = fread(raw_buffer, sizeof(raw_buffer[0]), sizeof(raw_buffer), stdin);
for (i = 0; i < len; i += 2)
sliding_dft(raw_buffer[i] - 127, raw_buffer[i + 1] - 127);
}
return 0;
}