Given two strings str1
and str2
, return the shortest string that has both str1
and str2
as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab" Output: "cabac" Explanation: str1 = "abac" is a subsequence of "cabac" because we can delete the first "c". str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac". The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1
andstr2
consist of lowercase English letters.
Related Topics:
Dynamic Programming
Similar Questions:
Let dp[i][j]
be the length of the shortest common supersequence of s[0..(i-1)]
and t[0..(j-1)]
.
dp[i][j] = 1 + dp[i-1][j-1] if s[i-1] == t[j-1]
1 + min(dp[i-1][j], dp[i][j-1]) if s[i-1] != t[j-1]
dp[0][i] = dp[i][0] = i
dp[M][N]
is the length of the shortest common supersequence of s
and t
.
With this dp
array, we can construct the shortest common supersequence.
// OJ: https://leetcode.com/problems/shortest-common-supersequence/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
string shortestCommonSupersequence(string s, string t) {
int M = s.size(), N = t.size();
vector<vector<int>> dp(M + 1, vector<int>(N + 1));
for (int i = 1; i <= N; ++i) dp[0][i] = i;
for (int i = 1; i <= M; ++i) dp[i][0] = i;
for (int i = 1; i <= M; ++i) {
for (int j = 1; j <= N; ++j) {
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1]);
}
}
string ans(dp[M][N], ' ');
for (int i = M, j = N, k = ans.size() - 1; k >= 0; --k) {
if (i && j && s[i - 1] == t[j - 1]) ans[k] = s[--i], --j;
else if (i && dp[i][j] == dp[i - 1][j] + 1) ans[k] = s[--i];
else ans[k] = t[--j];
}
return ans;
}
};
Let dp[i][j]
be the length of longest common subsequence of s[0..(i-1)]
and t[0..(j-1)]
.
dp[i][j] = 1 + dp[i-1][j-1] if s[i-1] == t[j-1]
max(dp[i-1][j], dp[i][j-1]) if s[i-1] != t[j-1]
dp[0][i] = dp[i][0] = 0
dp[M][N]
is the length of the LCS of s
and t
, and M + N - dp[M][N]
is the length of the shortest common supersequence.
We can use dp
array to construct the shortest common supersequence as well.
// OJ: https://leetcode.com/problems/shortest-common-supersequence/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
// Ref: https://leetcode.com/problems/shortest-common-supersequence/discuss/312757/JavaPython-3-O(mn)-clean-DP-code-w-picture-comments-and-analysis.
class Solution {
public:
string shortestCommonSupersequence(string s, string t) {
int M = s.size(), N = t.size();
vector<vector<int>> dp(M + 1, vector<int>(N + 1));
for (int i = 1; i <= M; ++i) {
for (int j = 1; j <= N; ++j) {
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
string ans(M + N - dp[M][N], ' ');
for (int i = M, j = N, k = ans.size() - 1; k >= 0; --k) {
if (i && j && s[i - 1] == t[j - 1]) ans[k] = s[--i], --j;
else if (i && dp[i][j] == dp[i - 1][j]) ans[k] = s[--i];
else ans[k] = t[--j];
}
return ans;
}
};